Solution-processed TiO2 as a hole blocking layer in PEDOT:PSS/n-Si heterojunction solar cells

IF 1.9 Q3 PHYSICS, APPLIED
Md. Enamul Karim, A. S. Islam, Yuki Nasuno, Abdul Kuddus, R. Ishikawa, H. Shirai
{"title":"Solution-processed TiO2 as a hole blocking layer in PEDOT:PSS/n-Si heterojunction solar cells","authors":"Md. Enamul Karim, A. S. Islam, Yuki Nasuno, Abdul Kuddus, R. Ishikawa, H. Shirai","doi":"10.1051/epjpv/2020004","DOIUrl":null,"url":null,"abstract":"The junction properties at the solution-processed titanium dioxide (TiO2)/n-type crystalline Si(n-Si) interface were studied for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/n-Si heterojunction solar cells by the steady-state photovoltaic performance and transient reverse recovery characterizations. The power conversion efficiency could be increased from 11.23% to 13.08% by adjusting the layer thickness of TiO2 together with increasing open-circuit voltage and suppressed dark saturation current density. These findings originate from the enhancement of the carrier collection efficiency at the n-Si/cathode interface. The transient reverse recovery characterization revealed that the surface recombination velocity S was ∼375 cm/s for double TiO2 interlayer of ∼2 nm thickness. This value was almost the same as that determined by microwave photoconductance decay measurement. These findings suggest that solution-processed TiO2 has potential as a hole blocking layer for the crystalline Si photovoltaics.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjpv/2020004","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2020004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

The junction properties at the solution-processed titanium dioxide (TiO2)/n-type crystalline Si(n-Si) interface were studied for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/n-Si heterojunction solar cells by the steady-state photovoltaic performance and transient reverse recovery characterizations. The power conversion efficiency could be increased from 11.23% to 13.08% by adjusting the layer thickness of TiO2 together with increasing open-circuit voltage and suppressed dark saturation current density. These findings originate from the enhancement of the carrier collection efficiency at the n-Si/cathode interface. The transient reverse recovery characterization revealed that the surface recombination velocity S was ∼375 cm/s for double TiO2 interlayer of ∼2 nm thickness. This value was almost the same as that determined by microwave photoconductance decay measurement. These findings suggest that solution-processed TiO2 has potential as a hole blocking layer for the crystalline Si photovoltaics.
溶液处理TiO2作为PEDOT:PSS/n-Si异质结太阳能电池中的空穴阻挡层
通过稳态光伏性能和瞬态反向恢复特性,研究了聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)/n-Si异质结太阳能电池在溶液处理二氧化钛(TiO2)/n型晶体Si(n-Si)界面的结性。通过调整TiO2的层厚度以及增加开路电压和抑制暗饱和电流密度,可以将功率转换效率从11.23%提高到13.08%。这些发现源于n-Si/阴极界面载流子收集效率的提高。瞬态反向恢复特性表明,表面复合速度S为~375 厘米/秒,适用于~2的双层TiO2夹层 nm厚度。该值与通过微波光电导衰减测量确定的值几乎相同。这些发现表明,溶液处理的TiO2具有作为晶体硅光伏的空穴阻挡层的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Photovoltaics
EPJ Photovoltaics PHYSICS, APPLIED-
CiteScore
2.30
自引率
4.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信