VIV Control Strategies Using Displacement-Based Phenomenological Model

Q4 Chemical Engineering
M. Hajj, Asrhad Mehmood, I. Akhtar, K. Billah
{"title":"VIV Control Strategies Using Displacement-Based Phenomenological Model","authors":"M. Hajj, Asrhad Mehmood, I. Akhtar, K. Billah","doi":"10.22055/JACM.2021.32635.2050","DOIUrl":null,"url":null,"abstract":"Linear and nonlinear feedback control of vortex-induced vibrations are assessed using a single degree-of-freedom phenomenological model of the uncontrolled response. The model is based on the role of linear and nonlinear damping forces in inducing and limiting the amplitude of these vibrations. First, the model prediction is validated using data from previously published high-fidelity direct numerical simulations. Then, linear and nonlinear control are applied to the validated model over a broad range of gain values. The predicted controlled responses are also validated against previously published results from high-fidelity numerical simulations. Based on this validation, it is shown that the single degree-of-freedom model is an effective alternative, in terms of computational cost, to high fidelity simulations in assessing control strategies over broad regions of control gains.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"7 1","pages":"1090-1097"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.32635.2050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Linear and nonlinear feedback control of vortex-induced vibrations are assessed using a single degree-of-freedom phenomenological model of the uncontrolled response. The model is based on the role of linear and nonlinear damping forces in inducing and limiting the amplitude of these vibrations. First, the model prediction is validated using data from previously published high-fidelity direct numerical simulations. Then, linear and nonlinear control are applied to the validated model over a broad range of gain values. The predicted controlled responses are also validated against previously published results from high-fidelity numerical simulations. Based on this validation, it is shown that the single degree-of-freedom model is an effective alternative, in terms of computational cost, to high fidelity simulations in assessing control strategies over broad regions of control gains.
基于位移现象学模型的VIV控制策略
使用非受控响应的单自由度唯象模型来评估涡激振动的线性和非线性反馈控制。该模型基于线性和非线性阻尼力在诱导和限制这些振动振幅方面的作用。首先,使用先前发表的高保真度直接数值模拟的数据来验证模型预测。然后,在较宽的增益值范围内,将线性和非线性控制应用于验证的模型。预测的受控响应也根据先前发表的高保真数值模拟结果进行了验证。基于这一验证,表明单自由度模型在计算成本方面是高保真度模拟的一种有效替代方案,用于评估控制增益大范围内的控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信