{"title":"A kinetic model and parameters estimate for the synthesis of 2-phenyloctane: a starting material of bio-degradable surfactant","authors":"Sudip Banerjee, M. Aurangzeb, Amit Kumar","doi":"10.1080/00194506.2022.2068077","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we have proposed a kinetic model of a 2-phenyloctane formation from benzene and 1-octene in the presence of Y zeolite CVB760 solid acid catalyst. The typical elementary reaction involved in benzene alkylation consists of isomerisation of π-bond of 1-octene and attachment of octyl ion with benzene. Here, we have followed transition state theory and statistical thermodynamics to express the rate expression for the disappearance of 1-octene and formation of 1-octene and 2-phenyloctane isomers. In transition state theory, we have incorporated a single-event concept to account for a change in the relative position of the atom during the chemical reaction. Subsequently, we also estimate activation energies involved in the kinetic model using the regression method and experimental data. For this, a particle swarm optimisation (PSO) followed by Levenberg–Marquardt algorithm, called hybrid PSO, is adopted to measure the activation energies. The statistical methods involved in this investigation include analysis of variance, F-test and parity diagram and comparison between the proposed kinetic model and experimental data confirm the kinetic model reliability and optimal estimate of activation energies. GRAPHICAL ABSTRACT","PeriodicalId":13430,"journal":{"name":"Indian Chemical Engineer","volume":"65 1","pages":"1 - 13"},"PeriodicalIF":0.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Chemical Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00194506.2022.2068077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this article, we have proposed a kinetic model of a 2-phenyloctane formation from benzene and 1-octene in the presence of Y zeolite CVB760 solid acid catalyst. The typical elementary reaction involved in benzene alkylation consists of isomerisation of π-bond of 1-octene and attachment of octyl ion with benzene. Here, we have followed transition state theory and statistical thermodynamics to express the rate expression for the disappearance of 1-octene and formation of 1-octene and 2-phenyloctane isomers. In transition state theory, we have incorporated a single-event concept to account for a change in the relative position of the atom during the chemical reaction. Subsequently, we also estimate activation energies involved in the kinetic model using the regression method and experimental data. For this, a particle swarm optimisation (PSO) followed by Levenberg–Marquardt algorithm, called hybrid PSO, is adopted to measure the activation energies. The statistical methods involved in this investigation include analysis of variance, F-test and parity diagram and comparison between the proposed kinetic model and experimental data confirm the kinetic model reliability and optimal estimate of activation energies. GRAPHICAL ABSTRACT