Quasi Random Resampling Designs for Multiple Frame Surveys

IF 1.6 Q1 STATISTICS & PROBABILITY
Cherif Ahmat Tidiane Aidara
{"title":"Quasi Random Resampling Designs for Multiple Frame Surveys","authors":"Cherif Ahmat Tidiane Aidara","doi":"10.6092/ISSN.1973-2201/8930","DOIUrl":null,"url":null,"abstract":"In this paper, we present two new algorithms that use the shuffled Sobol sequence to generate the bootstrap resampling designs in multiple frame surveys. We investigate the performance of the proposed algorithms in a simulation study using a three-overlapping frame setup design. The samples were selected independently from the frames using a stratified simple random sampling design. The performance of the proposed methods is comparable with the already established ones such as the Lohr-Rao bootstrap methods for multiple frame surveys in terms of relative percentage bias, coefficient of variation, and empirical coverage probabilities of 95 percent confidence interval.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/8930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present two new algorithms that use the shuffled Sobol sequence to generate the bootstrap resampling designs in multiple frame surveys. We investigate the performance of the proposed algorithms in a simulation study using a three-overlapping frame setup design. The samples were selected independently from the frames using a stratified simple random sampling design. The performance of the proposed methods is comparable with the already established ones such as the Lohr-Rao bootstrap methods for multiple frame surveys in terms of relative percentage bias, coefficient of variation, and empirical coverage probabilities of 95 percent confidence interval.
多帧测量的准随机重采样设计
在本文中,我们提出了两种新的算法,它们使用混洗的Sobol序列来生成多帧调查中的bootstrap重采样设计。我们在使用三个重叠帧设置设计的仿真研究中研究了所提出的算法的性能。使用分层简单随机抽样设计从帧中独立地选择样本。在相对百分比偏差、变异系数和95%置信区间的经验覆盖概率方面,所提出的方法的性能与已经建立的方法(如用于多框架调查的Lohr Rao bootstrap方法)相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信