{"title":"Hybrid nanofluid flow over a slippery surface for thermal exploration","authors":"A. Alnahdi, T. Gul","doi":"10.1177/16878132231190060","DOIUrl":null,"url":null,"abstract":"The potential of hybrid nanofluid (HNF) to maximize heat transportation has captured the attention of many researchers, inspiring them to further investigate the performance of the common base fluid. Conventional flow in Cu-Al2O3/H2O hybrid nanofluid (HNF) toward a high permeability horizontal flat plate incorporated in Darcy porous medium has been explored in this research to determine how Cu-Al2O3/H2O hybrid fluid will respond thermodynamically when physical factors like suction/injection and slip boundary conditions are present. In addition, the effects of radiation, dissipations, energy engagement, and inclined magnetized field associated with the fluid flow were studied. The governing system is transformed by similarity transformations to a solvable ordinary differential equation by employing HAM (Homotopy Analysis Method) scheme. The main results show that Cu-Al2O3/H2O has high thermal conductivity compared to Cu/H2O. As a result, hybrid fluids are essential for the development of thermal phenomena.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231190060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4
Abstract
The potential of hybrid nanofluid (HNF) to maximize heat transportation has captured the attention of many researchers, inspiring them to further investigate the performance of the common base fluid. Conventional flow in Cu-Al2O3/H2O hybrid nanofluid (HNF) toward a high permeability horizontal flat plate incorporated in Darcy porous medium has been explored in this research to determine how Cu-Al2O3/H2O hybrid fluid will respond thermodynamically when physical factors like suction/injection and slip boundary conditions are present. In addition, the effects of radiation, dissipations, energy engagement, and inclined magnetized field associated with the fluid flow were studied. The governing system is transformed by similarity transformations to a solvable ordinary differential equation by employing HAM (Homotopy Analysis Method) scheme. The main results show that Cu-Al2O3/H2O has high thermal conductivity compared to Cu/H2O. As a result, hybrid fluids are essential for the development of thermal phenomena.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering