The Performances of Gelman-Rubin and Geweke's Convergence Diagnostics of Monte Carlo Markov Chains in Bayesian Analysis

H. Du, Zijun Ke, Ge Jiang, Sijia Huang
{"title":"The Performances of Gelman-Rubin and Geweke's Convergence Diagnostics of Monte Carlo Markov Chains in Bayesian Analysis","authors":"H. Du, Zijun Ke, Ge Jiang, Sijia Huang","doi":"10.35566/jbds/v2n2/p3","DOIUrl":null,"url":null,"abstract":"\nBayesian statistics have been widely used given the development of Markov chain Monte Carlo sampling techniques and the growth of computational power. A major challenge of Bayesian methods that has not yet been fully addressed is how we can appropriately evaluate the convergence of the random samples to the target posterior distributions. In this paper, we focus on Gelman and Rubin's diagnostic (PSRF), Brooks and Gleman's diagnostic (MPSRF), and Geweke's diagnostics, and compare the Type I error rate and Type II error rate of seven convergence criteria: MPSRF>1.1, any upper bound of PSRF is larger than 1.1, more than 5% of the upper bounds of PSRFs are larger than 1.1, any PSRF is larger than 1.1, more than 5% of PSRFs are larger than 1.1, any Geweke test statistic is larger than 1.96 or smaller than -1.96, and more than 5% of Geweke test statistics are larger than 1.96 or smaller than -1.96. Based on the simulation results, we recommend the upper bound of PSRF if we only can choose one diagnostic. When the number of estimated parameters is large, between the diagnostic per parameter (i.e., PSRF) or the multivariate diagnostic (i.e., MPSRF), we recommend the upper bound of PSRF over MPSRF. Additionally, we do not suggest claiming convergence at the analysis level while allowing a small proportion of the parameters to have significant convergence diagnosis results.\n","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v2n2/p3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bayesian statistics have been widely used given the development of Markov chain Monte Carlo sampling techniques and the growth of computational power. A major challenge of Bayesian methods that has not yet been fully addressed is how we can appropriately evaluate the convergence of the random samples to the target posterior distributions. In this paper, we focus on Gelman and Rubin's diagnostic (PSRF), Brooks and Gleman's diagnostic (MPSRF), and Geweke's diagnostics, and compare the Type I error rate and Type II error rate of seven convergence criteria: MPSRF>1.1, any upper bound of PSRF is larger than 1.1, more than 5% of the upper bounds of PSRFs are larger than 1.1, any PSRF is larger than 1.1, more than 5% of PSRFs are larger than 1.1, any Geweke test statistic is larger than 1.96 or smaller than -1.96, and more than 5% of Geweke test statistics are larger than 1.96 or smaller than -1.96. Based on the simulation results, we recommend the upper bound of PSRF if we only can choose one diagnostic. When the number of estimated parameters is large, between the diagnostic per parameter (i.e., PSRF) or the multivariate diagnostic (i.e., MPSRF), we recommend the upper bound of PSRF over MPSRF. Additionally, we do not suggest claiming convergence at the analysis level while allowing a small proportion of the parameters to have significant convergence diagnosis results.
Gelman-Rubin和Geweke的蒙特卡罗马尔可夫链收敛性诊断在贝叶斯分析中的性能
随着马尔可夫链蒙特卡罗采样技术的发展和计算能力的增长,贝叶斯统计已经得到了广泛的应用。贝叶斯方法的一个尚未完全解决的主要挑战是,我们如何适当地评估随机样本对目标后验分布的收敛性。在本文中,我们重点研究了Gelman和Rubin的诊断(PSRF)、Brooks和Gleman的诊断(MPSRF)以及Geweke的诊断,并比较了七个收敛准则的I型错误率和II型错误率:MPSRF>1.1,PSRF的任何上界都大于1.1,PSRF上界的5%以上大于1.1,任何PSRF都大于1.1,超过5%的PSRF大于1.1,任何Geweke检验统计量大于1.96或小于-1.96,超过5%的Geweke试验统计量大于1.96%或小于-1.96%。基于仿真结果,如果我们只能选择一个诊断,我们建议PSRF的上限。当估计参数的数量很大时,在每参数诊断(即PSRF)或多变量诊断(即MPSRF)之间,我们建议PSRF的上限高于MPSRF。此外,我们不建议在分析级别声称收敛,同时允许一小部分参数具有显著的收敛诊断结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信