On macrosegregation in a binary alloy undergoing solidification shrinkage

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Assunção, M. Vynnycky
{"title":"On macrosegregation in a binary alloy undergoing solidification shrinkage","authors":"M. Assunção, M. Vynnycky","doi":"10.1017/s0956792523000050","DOIUrl":null,"url":null,"abstract":"\n The one-dimensional transient solidification of a binary alloy undergoing shrinkage is well-known as an invaluable benchmark for the testing of numerical codes that model macrosegregation. Here, recent work that considered the small-time behaviour of this problem is extended until complete solidification, thereby determining the solute profile across the entire solidified domain. The small-time solution is used as the initial condition for the numerical integration of a problem having three moving boundaries. Of particular significance is the so-called inverse segregation that is observed at the start of solidification, and the extreme segregation that is observed at the end; in the case of the example presented, which is for the often-cited Al–Cu system, the macrosegregation is found to be positive or negative, depending on whether Scheil’s equation or the lever rule is assumed at the microscale, respectively. The relevance of these results for the modelling of steady-state continuous casting processes – in particular, the phenomenon of centreline segregation – is also discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The one-dimensional transient solidification of a binary alloy undergoing shrinkage is well-known as an invaluable benchmark for the testing of numerical codes that model macrosegregation. Here, recent work that considered the small-time behaviour of this problem is extended until complete solidification, thereby determining the solute profile across the entire solidified domain. The small-time solution is used as the initial condition for the numerical integration of a problem having three moving boundaries. Of particular significance is the so-called inverse segregation that is observed at the start of solidification, and the extreme segregation that is observed at the end; in the case of the example presented, which is for the often-cited Al–Cu system, the macrosegregation is found to be positive or negative, depending on whether Scheil’s equation or the lever rule is assumed at the microscale, respectively. The relevance of these results for the modelling of steady-state continuous casting processes – in particular, the phenomenon of centreline segregation – is also discussed.
二元合金凝固收缩过程中的宏观偏析
二元合金在收缩过程中的一维瞬态凝固是测试模拟宏观偏析的数值代码的宝贵基准。在这里,最近考虑这个问题的小时间行为的工作被扩展到完全凝固,从而确定整个凝固区域的溶质分布。小时间解被用作具有三个移动边界的问题的数值积分的初始条件。特别重要的是在凝固开始时观察到的所谓反向偏析,以及在凝固结束时观察到极端偏析;在所举的例子中,即经常被引用的Al–Cu系统,发现宏观偏析是正的还是负的,这分别取决于在微观尺度上假设的是Scheil方程还是lever规则。还讨论了这些结果与稳态连铸过程建模的相关性,特别是中心线偏析现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信