An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization

E. Feli, R. Hosseini, S. Yazdani
{"title":"An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization","authors":"E. Feli, R. Hosseini, S. Yazdani","doi":"10.22044/JADM.2021.10718.2208","DOIUrl":null,"url":null,"abstract":"In Vitro Fertilization (IVF) is one of the scientifically known methods of infertility treatment. This study aimed at improving the performance of predicting the success of IVF using machine learning and its optimization through evolutionary algorithms. The Multilayer Perceptron Neural Network (MLP) were proposed to classify the infertility dataset. The Genetic algorithm was used to improve the performance of the Multilayer Perceptron Neural Network model. The proposed model was applied to a dataset including 594 eggs from 94 patients undergoing IVF, of which 318 were of good quality embryos and 276 were of lower quality embryos. For performance evaluation of the MLP model, an ROC curve analysis was conducted, and 10-fold cross-validation performed. The results revealed that this intelligent model has high efficiency with an accuracy of 96% for Multi-layer Perceptron neural network, which is promising compared to counterparts methods.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2021.10718.2208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Vitro Fertilization (IVF) is one of the scientifically known methods of infertility treatment. This study aimed at improving the performance of predicting the success of IVF using machine learning and its optimization through evolutionary algorithms. The Multilayer Perceptron Neural Network (MLP) were proposed to classify the infertility dataset. The Genetic algorithm was used to improve the performance of the Multilayer Perceptron Neural Network model. The proposed model was applied to a dataset including 594 eggs from 94 patients undergoing IVF, of which 318 were of good quality embryos and 276 were of lower quality embryos. For performance evaluation of the MLP model, an ROC curve analysis was conducted, and 10-fold cross-validation performed. The results revealed that this intelligent model has high efficiency with an accuracy of 96% for Multi-layer Perceptron neural network, which is promising compared to counterparts methods.
基于MLP神经网络和遗传算法优化的体外受精成功率智能预测模型
体外受精(IVF)是科学上已知的治疗不孕不育的方法之一。本研究旨在提高使用机器学习预测试管婴儿成功的性能,并通过进化算法进行优化。提出了多层感知器神经网络(MLP)对不孕不育数据集进行分类。将遗传算法用于改进多层感知器神经网络模型的性能。所提出的模型被应用于一个数据集,该数据集包括94名接受试管婴儿的患者的594个卵子,其中318个胚胎质量良好,276个胚胎质量较低。对于MLP模型的性能评估,进行了ROC曲线分析,并进行了10倍交叉验证。结果表明,该智能模型对多层感知器神经网络具有较高的效率,准确率为96%,与同类方法相比具有一定的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信