F-cone metric spaces over Fréchet algebra

IF 0.1 Q4 MATHEMATICS
H. Mehravaran, R. Allahyari, Hojjatollah Amiri Kayvanloo
{"title":"F-cone metric spaces over Fréchet algebra","authors":"H. Mehravaran, R. Allahyari, Hojjatollah Amiri Kayvanloo","doi":"10.1080/25742558.2020.1766797","DOIUrl":null,"url":null,"abstract":"Abstract The paper deals with the achievements of introducing the notion of F-cone metric spaces over Fréchet algebra as a generalization of F-cone metric spaces over a Banach algebra, -cone metric spaces over a Banach algebra, and -cone metric spaces over a Banach algebra. First, we study some of its topological properties. Next, we define a generalized Lipschitz for such spaces. Also, we investigate some fixed points for mappings satisfying such conditions in the new framework. Subsequently, as an application of our results, we provide an example. Our work generalizes some well-known results in the literature.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2020.1766797","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2020.1766797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The paper deals with the achievements of introducing the notion of F-cone metric spaces over Fréchet algebra as a generalization of F-cone metric spaces over a Banach algebra, -cone metric spaces over a Banach algebra, and -cone metric spaces over a Banach algebra. First, we study some of its topological properties. Next, we define a generalized Lipschitz for such spaces. Also, we investigate some fixed points for mappings satisfying such conditions in the new framework. Subsequently, as an application of our results, we provide an example. Our work generalizes some well-known results in the literature.
Fréchet代数上的F-锥度量空间
摘要本文讨论了在Fréchet代数上引入F-锥度量空间的概念作为Banach代数上F-锥度量空、Banach代数的-锥度量空间和Banach代数中-锥度量空的推广的成果。首先,我们研究了它的一些拓扑性质。接下来,我们为这样的空间定义了一个广义Lipschitz。此外,我们还研究了在新框架中满足这些条件的映射的一些不动点。随后,作为我们结果的应用,我们提供了一个例子。我们的工作概括了文献中一些著名的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信