Revisiting a Tiling Hierarchy (II)

V. Nitica
{"title":"Revisiting a Tiling Hierarchy (II)","authors":"V. Nitica","doi":"10.4236/OJDM.2018.82005","DOIUrl":null,"url":null,"abstract":"In a recent paper, we revisited Golomb’s hierarchy for tiling capabilities of finite sets of polyominoes. We considered the case when only translations are allowed for the tiles. In this classification, for several levels in Golomb’s hierarchy, more types appear. We showed that there is no general relationship among tiling capabilities for types corresponding to same level. Then we found the relationships from Golomb’s hierarchy that remain valid in this setup and found those that fail. As a consequence we discovered two alternative tiling hierarchies. The goal of this note is to study the validity of all implications in these new tiling hierarchies if one replaces the simply connected regions by deficient ones. We show that almost all of them fail. If one refines the hierarchy for tile sets that tile rectangles and for deficient regions then most of the implications of tiling capabilities can be recovered.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"08 1","pages":"48-63"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2018.82005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In a recent paper, we revisited Golomb’s hierarchy for tiling capabilities of finite sets of polyominoes. We considered the case when only translations are allowed for the tiles. In this classification, for several levels in Golomb’s hierarchy, more types appear. We showed that there is no general relationship among tiling capabilities for types corresponding to same level. Then we found the relationships from Golomb’s hierarchy that remain valid in this setup and found those that fail. As a consequence we discovered two alternative tiling hierarchies. The goal of this note is to study the validity of all implications in these new tiling hierarchies if one replaces the simply connected regions by deficient ones. We show that almost all of them fail. If one refines the hierarchy for tile sets that tile rectangles and for deficient regions then most of the implications of tiling capabilities can be recovered.
重新审视平铺层次(二)
在最近的一篇论文中,我们重新审视了Golomb的层次结构,用于划分有限组多面体的能力。我们考虑了瓷砖只允许翻译的情况。在这种分类中,对于Golomb层次结构中的几个级别,会出现更多类型。我们表明,对于同一级别对应的类型,平铺能力之间并没有普遍的关系。然后,我们从Golomb的层次结构中找到了在这个设置中仍然有效的关系,并找到了那些失败的关系。因此,我们发现了两种可供选择的平铺层次结构。本注释的目的是研究如果用缺陷区域替换简单连接区域,在这些新的平铺层次结构中所有含义的有效性。我们证明,它们几乎都失败了。如果细化平铺矩形的平铺集和不足区域的层次结构,则可以恢复平铺功能的大部分含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信