Enhanced thermal conductivity of polyamide nanocomposites involving expanded graphite–carbon nanotube network structure using supercritical CO2

IF 1.8 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Jinho Kee, Dohyeong Kim, Hyeri Kim, J. Koo
{"title":"Enhanced thermal conductivity of polyamide nanocomposites involving expanded graphite–carbon nanotube network structure using supercritical CO2","authors":"Jinho Kee, Dohyeong Kim, Hyeri Kim, J. Koo","doi":"10.1080/09243046.2022.2161479","DOIUrl":null,"url":null,"abstract":"In this study, supercritical carbon dioxide (scCO2) was used to form a network structure of expanded graphite (EG) and multi-walled carbon nanotube (MWCNT) to achieve high thermal conductivity. Continuous processes, such as supercritical drying and rapid expansion of supercritical solutions were applied to pristine graphite and MWCNT. Polyamide 6 (PA6) nanocomposites with scCO2-treated EG and MWCNT were prepared by twin-screw extruder-based melt compounding. In the PA6 nanocomposites, the EG sheets were homogenously dispersed, while the MWCNTs were located between the EG sheets, thereby acting as a bridge for the EG. Subsequently, the 35 wt.% imbedding in PA6 nanocomposite had an effective heat transfer pathway and high thermal conductivity (2.12 W m−1 K−1). It was observed that supercritical fluid processing is a facile and effective strategy to improve the thermal conductivity of polymer nanocomposites. Graphical Abstract","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09243046.2022.2161479","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, supercritical carbon dioxide (scCO2) was used to form a network structure of expanded graphite (EG) and multi-walled carbon nanotube (MWCNT) to achieve high thermal conductivity. Continuous processes, such as supercritical drying and rapid expansion of supercritical solutions were applied to pristine graphite and MWCNT. Polyamide 6 (PA6) nanocomposites with scCO2-treated EG and MWCNT were prepared by twin-screw extruder-based melt compounding. In the PA6 nanocomposites, the EG sheets were homogenously dispersed, while the MWCNTs were located between the EG sheets, thereby acting as a bridge for the EG. Subsequently, the 35 wt.% imbedding in PA6 nanocomposite had an effective heat transfer pathway and high thermal conductivity (2.12 W m−1 K−1). It was observed that supercritical fluid processing is a facile and effective strategy to improve the thermal conductivity of polymer nanocomposites. Graphical Abstract
超临界CO2增强膨胀石墨-碳纳米管网络结构聚酰胺纳米复合材料的热导率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Composite Materials
Advanced Composite Materials 工程技术-材料科学:复合
CiteScore
5.00
自引率
20.70%
发文量
54
审稿时长
3 months
期刊介绍: "Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications. Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信