H∞ interpolation constrained by Beurling–Sobolev norms

Q3 Mathematics
A. Baranov, R. Zarouf
{"title":"H∞ interpolation constrained by Beurling–Sobolev norms","authors":"A. Baranov, R. Zarouf","doi":"10.2478/mjpaa-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract We consider a Nevanlinna–Pick interpolation problem on finite sequences of the unit disc, constrained by Beurling–Sobolev norms. We find sharp asymptotics of the corresponding interpolation quantities, thereby improving the known estimates. On our way we obtain a S. M. Nikolskii type inequality for rational functions whose poles lie outside of the unit disc. It shows that the embedding of the Hardy space H2 into the Wiener algebra of absolutely convergent Fourier/Taylor series is invertible on the subset of rational functions of a given degree, whose poles remain at a given distance from the unit circle.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"157 - 167"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider a Nevanlinna–Pick interpolation problem on finite sequences of the unit disc, constrained by Beurling–Sobolev norms. We find sharp asymptotics of the corresponding interpolation quantities, thereby improving the known estimates. On our way we obtain a S. M. Nikolskii type inequality for rational functions whose poles lie outside of the unit disc. It shows that the embedding of the Hardy space H2 into the Wiener algebra of absolutely convergent Fourier/Taylor series is invertible on the subset of rational functions of a given degree, whose poles remain at a given distance from the unit circle.
Beurling–Sobolev范数约束的H∞插值
摘要我们考虑单位圆盘有限序列上的Nevanlinna–Pick插值问题,受Beurling–Sobolev范数约束。我们发现了相应插值量的尖锐渐近性,从而改进了已知的估计。在我们的方法中,我们得到了极点位于单位圆盘外的有理函数的S.M.Nikolski型不等式。证明了Hardy空间H2在绝对收敛傅立叶/泰勒级数的Wiener代数中的嵌入在给定次数的有理函数的子集上是可逆的,其极点与单位圆保持给定距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信