Additive autoregressive models for matrix valued time series

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hong-Fan Zhang
{"title":"Additive autoregressive models for matrix valued time series","authors":"Hong-Fan Zhang","doi":"10.1111/jtsa.12718","DOIUrl":null,"url":null,"abstract":"<p>In this article, we develop additive autoregressive models (Add-ARM) for the time series data with matrix valued predictors. The proposed models assume separable row, column and lag effects of the matrix variables, attaining stronger interpretability when compared with existing bilinear matrix autoregressive models. We utilize the Gershgorin's circle theorem to impose some certain conditions on the parameter matrices, which make the underlying process strictly stationary. We also introduce the alternating least squares estimation method to solve the involved equality constrained optimization problems. Asymptotic distributions of the parameter estimators are derived. In addition, we employ hypothesis tests to run diagnostics on the parameter matrices. The performance of the proposed models and methods is further demonstrated through simulations and real data analysis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12718","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we develop additive autoregressive models (Add-ARM) for the time series data with matrix valued predictors. The proposed models assume separable row, column and lag effects of the matrix variables, attaining stronger interpretability when compared with existing bilinear matrix autoregressive models. We utilize the Gershgorin's circle theorem to impose some certain conditions on the parameter matrices, which make the underlying process strictly stationary. We also introduce the alternating least squares estimation method to solve the involved equality constrained optimization problems. Asymptotic distributions of the parameter estimators are derived. In addition, we employ hypothesis tests to run diagnostics on the parameter matrices. The performance of the proposed models and methods is further demonstrated through simulations and real data analysis.

矩阵值时间序列的加性自回归模型
在本文中,我们为具有矩阵值预测因子的时间序列数据开发了加性自回归模型(Add-ARM)。与现有的双线性矩阵自回归模型相比,所提出的模型假设矩阵变量的行、列和滞后效应是可分离的,从而获得更强的可解释性。我们利用Gershgorin圆定理对参数矩阵施加了一些特定的条件,使下面的过程严格平稳。我们还介绍了交替最小二乘估计方法来解决所涉及的等式约束优化问题。导出了参数估计量的渐近分布。此外,我们采用假设检验对参数矩阵进行诊断。通过仿真和实际数据分析,进一步证明了所提出的模型和方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信