Hilbert-Haar coordinates and Miranda's theorem in Lie groups

IF 0.2 Q4 MATHEMATICS
A. Domokos, J. Manfredi
{"title":"Hilbert-Haar coordinates and Miranda's theorem in Lie groups","authors":"A. Domokos, J. Manfredi","doi":"10.6092/ISSN.2240-2829/10582","DOIUrl":null,"url":null,"abstract":"We study the interior regularity of solutions to a class of quasilinear equations of non-degenerate p-Laplacian type on Lie groups that admit a system of Hilbert-Haar coordinates. These are coordinates with respect to which every linear function has zero symmetrized second order horizontal derivatives. All Carnot groups of rank two are in this category, as well as the Engel group, the Goursat type groups, and those general Carnot groups of step three for which the non-zero commutators of order three are linearly independent.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"11 1","pages":"94-118"},"PeriodicalIF":0.2000,"publicationDate":"2020-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We study the interior regularity of solutions to a class of quasilinear equations of non-degenerate p-Laplacian type on Lie groups that admit a system of Hilbert-Haar coordinates. These are coordinates with respect to which every linear function has zero symmetrized second order horizontal derivatives. All Carnot groups of rank two are in this category, as well as the Engel group, the Goursat type groups, and those general Carnot groups of step three for which the non-zero commutators of order three are linearly independent.
李群中的Hilbert-Haar坐标和Miranda定理
我们研究了一类李群上的非退化p-Laplacian型拟线性方程的解的内部正则性,该方程允许Hilbert-Haar坐标系。这些坐标是每个线性函数具有零个对称二阶水平导数的坐标。第二阶的所有卡诺群都属于这一类,还有Engel群、Goursat型群和第三阶的一般卡诺群,其中第三阶非零换子是线性独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信