Experimental and Analytical Study on the Liquid Film by Jet–Wall Impingement

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Chuansheng Liu, Chenglong Tang, Qingchen Ma, Zuohua Huang, Peng Zhang, Fengyun Zhang
{"title":"Experimental and Analytical Study on the Liquid Film by Jet–Wall Impingement","authors":"Chuansheng Liu, Chenglong Tang, Qingchen Ma, Zuohua Huang, Peng Zhang, Fengyun Zhang","doi":"10.2514/1.t6656","DOIUrl":null,"url":null,"abstract":"Liquid film cooling by jet–wall impingement on the combustor wall is commonly used in small rocket engines. The heat transfer mechanism inside the liquid film is closely related to the film flow. Therefore, we establish a comprehensive analytical model with reasonable assumptions for the liquid film flow by inclined jet–wall impingement, and we validate it through a series of experiments. It is found that the predicted liquid film dimensions agree well with the experimental results. As the impingement angle increases from 30 to 60 deg, the shape of the liquid film turns from an oval to a circle. With the increase of the impingement velocity from 7.8 to [Formula: see text], the width, length, and area of the liquid film increase. The wall roughness [Formula: see text] ranges from 6.3 to [Formula: see text], which shows negligible effects on the liquid film dimensions. As the surface tension increases from 36.03 to 67.13 mN/m and the viscosity increases from 1 to [Formula: see text], the dimensions of the liquid film decrease. The effect of viscosity is more significant than surface tension within the scope of this experiment. Finally, an empirical correlation for the three investigated film dimensional parameters is proposed.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6656","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Liquid film cooling by jet–wall impingement on the combustor wall is commonly used in small rocket engines. The heat transfer mechanism inside the liquid film is closely related to the film flow. Therefore, we establish a comprehensive analytical model with reasonable assumptions for the liquid film flow by inclined jet–wall impingement, and we validate it through a series of experiments. It is found that the predicted liquid film dimensions agree well with the experimental results. As the impingement angle increases from 30 to 60 deg, the shape of the liquid film turns from an oval to a circle. With the increase of the impingement velocity from 7.8 to [Formula: see text], the width, length, and area of the liquid film increase. The wall roughness [Formula: see text] ranges from 6.3 to [Formula: see text], which shows negligible effects on the liquid film dimensions. As the surface tension increases from 36.03 to 67.13 mN/m and the viscosity increases from 1 to [Formula: see text], the dimensions of the liquid film decrease. The effect of viscosity is more significant than surface tension within the scope of this experiment. Finally, an empirical correlation for the three investigated film dimensional parameters is proposed.
射流冲击液膜的实验与分析研究
在小型火箭发动机中,通常使用喷射壁撞击燃烧室壁的液膜冷却。液膜内部的传热机理与液膜流动密切相关。因此,我们建立了一个具有合理假设的倾斜射流-壁面冲击液膜流动的综合分析模型,并通过一系列实验进行了验证。结果表明,预测的液膜尺寸与实验结果吻合较好。当冲击角度从30度增加到60度时,液膜的形状从椭圆形变为圆形。随着冲击速度从7.8增加到[公式:见正文],液膜的宽度、长度和面积都会增加。壁粗糙度[公式:见正文]范围为6.3至[公式:参见正文],其对液膜尺寸的影响可忽略不计。随着表面张力从36.03增加到67.13mN/m,粘度从1增加到[公式:见正文],液膜的尺寸减小。在本实验范围内,粘度的影响比表面张力更显著。最后,提出了所研究的三个薄膜尺寸参数的经验相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信