A prediction model for complex equipment remaining useful life using gated recurrent unit complex networks

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sheng Tong, Jie Yang, Haohua Zong
{"title":"A prediction model for complex equipment remaining useful life using gated recurrent unit complex networks","authors":"Sheng Tong, Jie Yang, Haohua Zong","doi":"10.1080/17517575.2021.2008515","DOIUrl":null,"url":null,"abstract":"ABSTRACT Complex equipment has the characteristics of diverse feature types, complex internal structures, and timing information coupling. This paper realizes a complex gated recurrent unit (GRU) network that contains monotonicity-Las Vegas wrapper based feature selection and accelerated GRU based RUL prediction. By eliminating useless data and noise data, the input data volume of the prediction model is reduced, and the efficiency and accuracy of the RUL prediction for complex equipment are effectively improved. The experimental results show our method can predict the RUL of complex equipment more efficiently and increase the prediction accuracy of GRU by 18.3%.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2021.2008515","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Complex equipment has the characteristics of diverse feature types, complex internal structures, and timing information coupling. This paper realizes a complex gated recurrent unit (GRU) network that contains monotonicity-Las Vegas wrapper based feature selection and accelerated GRU based RUL prediction. By eliminating useless data and noise data, the input data volume of the prediction model is reduced, and the efficiency and accuracy of the RUL prediction for complex equipment are effectively improved. The experimental results show our method can predict the RUL of complex equipment more efficiently and increase the prediction accuracy of GRU by 18.3%.
基于门控递归单元复杂网络的复杂设备剩余使用寿命预测模型
摘要复杂设备具有特征类型多样、内部结构复杂、时序信息耦合等特点。本文实现了一个复杂门控递归单元(GRU)网络,该网络包含基于单调拉斯维加斯包装器的特征选择和基于GRU的RUL预测。通过消除无用数据和噪声数据,减少了预测模型的输入数据量,有效地提高了复杂设备RUL预测的效率和准确性。实验结果表明,该方法可以更有效地预测复杂设备的RUL,并将GRU的预测精度提高18.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信