Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations

IF 1 Q1 MATHEMATICS
K. Rouibah, A. Bellour, P. Lima, E. Rawashdeh
{"title":"Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations","authors":"K. Rouibah, A. Bellour, P. Lima, E. Rawashdeh","doi":"10.46793/kgjmat2204.635r","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2204.635r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.
求解非线性Volterra积分方程的迭代连续配置方法
本文研究非线性Volterra积分方程的数值解。本文的主要目的是在连续配置拉格朗日多项式的基础上,为非线性Volterra积分方程的数值求解提供一种新的数值方法。结果表明,该方法是收敛的。将结果与其他著名数值方法的结果进行了比较,以证明该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信