Non-contact type dynamic responses test of wind turbines

IF 0.6 Q4 ENGINEERING, MECHANICAL
Li Cao, Qianqian Zhang, W. Sun
{"title":"Non-contact type dynamic responses test of wind turbines","authors":"Li Cao, Qianqian Zhang, W. Sun","doi":"10.21595/jme.2023.23257","DOIUrl":null,"url":null,"abstract":"The performance analysis of wind turbine systems should be considered when calculating the wind speed relative to the wind turbine structure, and is essential for wind turbine design. Since the conditions are precarious in transient state and the operating environments are challenging, the wind turbine is a complex, multivariate, nonlinear system. This paper presents a novel dynamic response test method for wind turbines based on three-dimensional digital speckle measurement. This method use a real-time speckle image collection of objects in various stages using binocular stereo vision to perform stereo matching of deformation points on object surface. A digital image correlation algorithm is used to rebuild three-dimensional space coordinates of matching points so as to achieve wind turbine dynamic response. A laboratory-scale experimental platform is constructed to test the dynamic response of the wind turbine system. In order to verify the accuracy of the proposed method, a three-dimensional model of a wind turbine is built. With dynamic structure response process adopted to carry out dynamic analysis and compare theoretical results with test results, the results vary by less than 10 %, indicating that the test method presented in the paper is feasible and effective.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Measurements in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jme.2023.23257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The performance analysis of wind turbine systems should be considered when calculating the wind speed relative to the wind turbine structure, and is essential for wind turbine design. Since the conditions are precarious in transient state and the operating environments are challenging, the wind turbine is a complex, multivariate, nonlinear system. This paper presents a novel dynamic response test method for wind turbines based on three-dimensional digital speckle measurement. This method use a real-time speckle image collection of objects in various stages using binocular stereo vision to perform stereo matching of deformation points on object surface. A digital image correlation algorithm is used to rebuild three-dimensional space coordinates of matching points so as to achieve wind turbine dynamic response. A laboratory-scale experimental platform is constructed to test the dynamic response of the wind turbine system. In order to verify the accuracy of the proposed method, a three-dimensional model of a wind turbine is built. With dynamic structure response process adopted to carry out dynamic analysis and compare theoretical results with test results, the results vary by less than 10 %, indicating that the test method presented in the paper is feasible and effective.
风力涡轮机的非接触式动态响应试验
在计算相对于风力涡轮机结构的风速时,应考虑风力涡轮机系统的性能分析,这对风力涡轮机的设计至关重要。由于瞬态条件不稳定,运行环境具有挑战性,因此风力涡轮机是一个复杂、多元、非线性的系统。本文提出了一种基于三维数字散斑测量的风机动态响应测试方法。该方法利用双目立体视觉对不同阶段的物体进行实时散斑图像采集,对物体表面的变形点进行立体匹配。采用数字图像相关算法重建匹配点的三维空间坐标,实现风机的动态响应。建立了一个实验室规模的实验平台来测试风力涡轮机系统的动态响应。为了验证该方法的准确性,建立了风力涡轮机的三维模型。采用结构动力响应过程进行动力分析,并将理论结果与试验结果进行比较,结果变化小于10%,表明本文提出的试验方法是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Measurements in Engineering
Journal of Measurements in Engineering ENGINEERING, MECHANICAL-
CiteScore
2.00
自引率
6.20%
发文量
16
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信