A Further Generalization of limn→∞n!/nn=1/e {\lim _{n \to \infty }}\root n \of {n!/n} = 1/e

IF 0.4 Q4 MATHEMATICS
Reza Farhadian, R. Jakimczuk
{"title":"A Further Generalization of limn→∞n!/nn=1/e {\\lim _{n \\to \\infty }}\\root n \\of {n!/n} = 1/e","authors":"Reza Farhadian, R. Jakimczuk","doi":"10.2478/amsil-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract It is well-known, as follows from the Stirling’s approximation n!∼2πn(n/e)n n! \\sim \\sqrt {2\\pi n{{\\left( {n/e} \\right)}^n}} , that n!/n→1/en \\root n \\of {n!/n \\to 1/e} . A generalization of this limit is (11s· 22s· · · nns)1/ns+1 · n−1/(s+1) → e−1/(s+1)2 which was established by N. Schaumberger in 1989 (see [8]). The aim of this work is to establish a new generalization that is in fact an improvement of Schaumberger’s formula for a general sequence An of positive real numbers. All of the results are applied to some well-known sequences in mathematics, for example, for the prime numbers sequence and the sequence of perfect powers.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"167 - 175"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract It is well-known, as follows from the Stirling’s approximation n!∼2πn(n/e)n n! \sim \sqrt {2\pi n{{\left( {n/e} \right)}^n}} , that n!/n→1/en \root n \of {n!/n \to 1/e} . A generalization of this limit is (11s· 22s· · · nns)1/ns+1 · n−1/(s+1) → e−1/(s+1)2 which was established by N. Schaumberger in 1989 (see [8]). The aim of this work is to establish a new generalization that is in fact an improvement of Schaumberger’s formula for a general sequence An of positive real numbers. All of the results are applied to some well-known sequences in mathematics, for example, for the prime numbers sequence and the sequence of perfect powers.
limn的进一步推广→∞n/nn=1/e
摘要众所周知,从斯特灵近似值n!~2πn(n/e)n!\sim\sqrt{2πn{\left({n/e}\right)}^n}},即n/n→{n!/n\到1/e}的1/en\root。该极限的推广为(11s·22s··nns)1/ns+1·n−1/(s+1)→ e−1/(s+1)2,由N.Schaumberger于1989年建立(见[8])。这项工作的目的是建立一个新的推广,它实际上是对正实数的一般序列an的Schaumberger公式的改进。所有的结果都应用于数学中一些著名的序列,例如素数序列和完全幂序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信