{"title":"Macroscopic loops in the 3d double-dimer model","authors":"A. Quitmann, L. Taggi","doi":"10.1214/23-ecp536","DOIUrl":null,"url":null,"abstract":"The double dimer model is defined as the superposition of two independent uniformly distributed dimer covers of a graph. Its configurations can be viewed as disjoint collections of self-avoiding loops. Our first result is that in $\\mathbb{Z}^d$, $d>2$, the loops in the double dimer model are macroscopic. These are shown to behave qualitatively differently than in two dimensions. In particular, we show that, given two distant points of a large box, with uniformly positive probability there exists a loop visiting both points. Our second result involves the monomer double-dimer model, namely the double-dimer model in the presence of a density of monomers. These are vertices which are not allowed to be touched by any loop. This model depends on a parameter, the monomer activity, which controls the density of monomers. It is known from Betz and Taggi (2019) and Taggi (2021) that a finite critical threshold of the monomer activity exists, below which a self-avoiding walk forced through the system is macroscopic. Our paper shows that, when $d>2$, such a critical threshold is strictly positive. In other words, the self-avoiding walk is macroscopic even in the presence of a positive density of monomers.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp536","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5
Abstract
The double dimer model is defined as the superposition of two independent uniformly distributed dimer covers of a graph. Its configurations can be viewed as disjoint collections of self-avoiding loops. Our first result is that in $\mathbb{Z}^d$, $d>2$, the loops in the double dimer model are macroscopic. These are shown to behave qualitatively differently than in two dimensions. In particular, we show that, given two distant points of a large box, with uniformly positive probability there exists a loop visiting both points. Our second result involves the monomer double-dimer model, namely the double-dimer model in the presence of a density of monomers. These are vertices which are not allowed to be touched by any loop. This model depends on a parameter, the monomer activity, which controls the density of monomers. It is known from Betz and Taggi (2019) and Taggi (2021) that a finite critical threshold of the monomer activity exists, below which a self-avoiding walk forced through the system is macroscopic. Our paper shows that, when $d>2$, such a critical threshold is strictly positive. In other words, the self-avoiding walk is macroscopic even in the presence of a positive density of monomers.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.