Graphs defined on groups

IF 0.7 Q2 MATHEMATICS
P. Cameron
{"title":"Graphs defined on groups","authors":"P. Cameron","doi":"10.22108/IJGT.2021.127679.1681","DOIUrl":null,"url":null,"abstract":"‎This paper concerns aspects of various graphs whose vertex set is a group $G$‎ ‎and whose edges reflect group structure in some way (so that‎, ‎in particular‎, ‎they are invariant under the action of the automorphism group of $G$)‎. ‎The‎ ‎particular graphs I will chiefly discuss are the power graph‎, ‎enhanced power‎ ‎graph‎, ‎deep commuting graph‎, ‎commuting graph‎, ‎and non-generating graph‎. \n ‎My main concern is not with properties of these graphs individually‎, ‎but ‎‎‎‎rather with comparisons between them‎. ‎The graphs mentioned‎, ‎together‎ ‎with the null and complete graphs‎, ‎form a hierarchy (as long as $G$ is‎ ‎non-abelian)‎, ‎in the sense that the edge set of any one is contained in that‎ ‎of the next; interesting questions involve when two graphs in the hierarchy‎ ‎are equal‎, ‎or what properties the difference between them has‎. ‎I also ‎‎‎consider various properties such as universality and forbidden subgraphs‎, ‎comparing how these properties play out in the different graphs‎. \n ‎I have also included some results on intersection graphs of subgroups of‎ ‎various types‎, ‎which are often in a ``dual'' relation to one of the other‎ ‎graphs considered‎. ‎Another actor is the Gruenberg--Kegel graph‎, ‎or prime graph‎, ‎of a group‎: ‎this very small graph has a surprising influence over various‎ ‎graphs defined on the group‎. \n ‎Other graphs which have been proposed‎, ‎such as the nilpotence‎, ‎solvability‎, ‎and Engel graphs‎, ‎will be touched on rather more briefly‎. ‎My emphasis is on‎ ‎finite groups but there is a short section on results for infinite groups‎. ‎There are briefer discussions of general $Aut(G)$-invariant graphs‎, ‎and structures other than groups (such as semigroups and rings)‎. \n‎Proofs‎, ‎or proof sketches‎, ‎of known results have been included where possible‎. ‎Also‎, ‎many open questions are stated‎, ‎in the hope of stimulating further‎ ‎investigation‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.127679.1681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 54

Abstract

‎This paper concerns aspects of various graphs whose vertex set is a group $G$‎ ‎and whose edges reflect group structure in some way (so that‎, ‎in particular‎, ‎they are invariant under the action of the automorphism group of $G$)‎. ‎The‎ ‎particular graphs I will chiefly discuss are the power graph‎, ‎enhanced power‎ ‎graph‎, ‎deep commuting graph‎, ‎commuting graph‎, ‎and non-generating graph‎.  ‎My main concern is not with properties of these graphs individually‎, ‎but ‎‎‎‎rather with comparisons between them‎. ‎The graphs mentioned‎, ‎together‎ ‎with the null and complete graphs‎, ‎form a hierarchy (as long as $G$ is‎ ‎non-abelian)‎, ‎in the sense that the edge set of any one is contained in that‎ ‎of the next; interesting questions involve when two graphs in the hierarchy‎ ‎are equal‎, ‎or what properties the difference between them has‎. ‎I also ‎‎‎consider various properties such as universality and forbidden subgraphs‎, ‎comparing how these properties play out in the different graphs‎.  ‎I have also included some results on intersection graphs of subgroups of‎ ‎various types‎, ‎which are often in a ``dual'' relation to one of the other‎ ‎graphs considered‎. ‎Another actor is the Gruenberg--Kegel graph‎, ‎or prime graph‎, ‎of a group‎: ‎this very small graph has a surprising influence over various‎ ‎graphs defined on the group‎.  ‎Other graphs which have been proposed‎, ‎such as the nilpotence‎, ‎solvability‎, ‎and Engel graphs‎, ‎will be touched on rather more briefly‎. ‎My emphasis is on‎ ‎finite groups but there is a short section on results for infinite groups‎. ‎There are briefer discussions of general $Aut(G)$-invariant graphs‎, ‎and structures other than groups (such as semigroups and rings)‎. ‎Proofs‎, ‎or proof sketches‎, ‎of known results have been included where possible‎. ‎Also‎, ‎many open questions are stated‎, ‎in the hope of stimulating further‎ ‎investigation‎.
在组上定义的图
‎本文讨论了顶点集为群$G的各种图的几个方面$‎ ‎并且其边缘以某种方式反映了组结构(使得‎, ‎特别是‎, ‎它们在$G$的自同构群的作用下是不变的)‎. ‎这个‎ ‎我将主要讨论的特定图是幂图‎, ‎增强型功率‎ ‎图表‎, ‎深交换图‎, ‎通勤图‎, ‎和非生成图‎. ‎我主要关心的不是这些图各自的性质‎, ‎但是‎‎‎‎而是通过它们之间的比较‎. ‎上面提到的图表‎, ‎在一起‎ ‎具有空图和完全图‎, ‎形成一个层次结构(只要$G$‎ ‎非阿贝尔)‎, ‎在某种意义上,任何一个的边集都包含在‎ ‎下一个;有趣的问题涉及层次结构中的两个图‎ ‎相等‎, ‎或者它们之间的区别是什么‎. ‎我也‎‎‎考虑各种性质,如普适性和禁忌子图‎,‎比较这些特性在不同图中的表现‎. ‎我还包括了关于的子群的交图的一些结果‎ ‎各种类型‎, ‎它们往往与另一个具有“双重”关系‎ ‎考虑的图形‎. ‎另一个因素是Gruenberg-Kegel图‎, ‎或素数图‎, ‎的‎: ‎这个非常小的图形对各种‎ ‎在组上定义的图‎. ‎已提出的其他图表‎, ‎比如幂零‎, ‎可解性‎, ‎和Engel图‎, ‎将更简短地介绍‎. ‎我的重点是‎ ‎有限群但是关于无限群的结果有一个短部分‎. ‎关于一般的$Aut(G)$不变图有一些简单的讨论‎, ‎和群以外的结构(如半群和环)‎. ‎校样‎, ‎或验证草图‎, ‎在可能的情况下,已包括已知结果的‎. ‎而且‎, ‎陈述了许多悬而未决的问题‎, ‎希望进一步刺激‎ ‎调查‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信