Dyuti Prakash Sarkar, J. Ando, K. Das, A. Chattopadhyay, G. Ghosh, K. Shimizu, H. Ohfuji
{"title":"Serpentinite enigma of the Rakhabdev lineament in western India: Origin, deformation characterization and tectonic implications","authors":"Dyuti Prakash Sarkar, J. Ando, K. Das, A. Chattopadhyay, G. Ghosh, K. Shimizu, H. Ohfuji","doi":"10.2465/jmps.191016","DOIUrl":null,"url":null,"abstract":"Serpentine mineralogy controls fault rheology in the ocean and continental rift settings to subduction settings and hence can be used to discern the paleo deformational conditions. The Rakhabdev lineament from Rajasthan, India, provides a unique opportunity to understand its tectonic evolution inferred from the deformation microstructures. However, the complexity of surrounding calc – silicate rocks had resulted in a long – driven debate on the origins of these serpentinite rocks. The source rocks of the serpentinites also cannot be determined pre-viously due to complete serpentinization and metasomatism rendering complete alteration of the source rocks. In this study, the serpentinite mineral was analyzed using Raman spectroscopy to accurately characterize its molecular structure. The presence of the antigorite – variety of serpentine mineral indicate towards the origin of Rakhabdev serpentinites in the upper mantle condition. The antigorite serpentinite of Rakhabdev is a hydration product of mantle materials showing high Mg# values obtained from EPMA data. The microstructural and EBSD analysis also indicates two stages of deformation, with deformation of antigorite at upper mantle conditions, followed by their shallow crustal carbonate metasomatism and subsequent deformation of the carbo-nates, with later stage calcite vein intrusion. This resulted in the appearance of antigorite in contact with calcite, dolomite, talc, tremolite, and chlorite. The exhumation of mantle wedge antigorite serpentinite is, therefore, indicating a paleo – subduction zone culminating in a crustal – scale collision boundary expressed as arcuate dis-continuous bodies forming the Rakhabdev lineament.","PeriodicalId":51093,"journal":{"name":"Journal of Mineralogical and Petrological Sciences","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2465/jmps.191016","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mineralogical and Petrological Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2465/jmps.191016","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Serpentine mineralogy controls fault rheology in the ocean and continental rift settings to subduction settings and hence can be used to discern the paleo deformational conditions. The Rakhabdev lineament from Rajasthan, India, provides a unique opportunity to understand its tectonic evolution inferred from the deformation microstructures. However, the complexity of surrounding calc – silicate rocks had resulted in a long – driven debate on the origins of these serpentinite rocks. The source rocks of the serpentinites also cannot be determined pre-viously due to complete serpentinization and metasomatism rendering complete alteration of the source rocks. In this study, the serpentinite mineral was analyzed using Raman spectroscopy to accurately characterize its molecular structure. The presence of the antigorite – variety of serpentine mineral indicate towards the origin of Rakhabdev serpentinites in the upper mantle condition. The antigorite serpentinite of Rakhabdev is a hydration product of mantle materials showing high Mg# values obtained from EPMA data. The microstructural and EBSD analysis also indicates two stages of deformation, with deformation of antigorite at upper mantle conditions, followed by their shallow crustal carbonate metasomatism and subsequent deformation of the carbo-nates, with later stage calcite vein intrusion. This resulted in the appearance of antigorite in contact with calcite, dolomite, talc, tremolite, and chlorite. The exhumation of mantle wedge antigorite serpentinite is, therefore, indicating a paleo – subduction zone culminating in a crustal – scale collision boundary expressed as arcuate dis-continuous bodies forming the Rakhabdev lineament.
期刊介绍:
The Journal of Mineralogical and Petrological Sciences (JMPS) publishes original articles, reviews and letters in the fields of mineralogy, petrology, economic geology, geochemistry, planetary materials science, and related scientific fields. As an international journal, we aim to provide worldwide diffusion for the results of research in Japan, as well as to serve as a medium with high impact factor for the global scientific communication
Given the remarkable rate at which publications have been expanding to include several fields, including planetary and earth sciences, materials science, and instrumental analysis technology, the journal aims to encourage and develop a variety of such new interdisciplinary scientific fields, to encourage the wide scope of such new fields to bloom in the future, and to contribute to the rapidly growing international scientific community.
To cope with this emerging scientific environment, in April 2000 the journal''s two parent societies, MSJ* (The Mineralogical Society of Japan) and JAMPEG* (The Japanese Association of Mineralogists, Petrologists and Economic Geologists), combined their respective journals (the Mineralogical Journal and the Journal of Mineralogy, Petrology and Economic Geology). The result of this merger was the Journal of Mineralogical and Petrological Sciences, which has a greatly expanded and enriched scope compared to its predecessors.