Delta-points in Banach spaces generated by adequate families

IF 0.6 Q3 MATHEMATICS
T. Abrahamsen, Vegard Lima, Andr'e Martiny
{"title":"Delta-points in Banach spaces generated by adequate families","authors":"T. Abrahamsen, Vegard Lima, Andr'e Martiny","doi":"10.1215/00192082-10123638","DOIUrl":null,"url":null,"abstract":"We study delta-points in Banach spaces $h_{\\mathcal{A},p}$ generated by adequate families $\\mathcal A$ where $1 \\le p 1$ we prove that neither $h_{\\mathcal{A},p}$ nor its dual contain delta-points. Under the extra assumption that $\\mathcal A$ is regular, we prove that the same is true when $p=1.$ In particular the Schreier spaces and their duals fail to have delta-points. If $\\mathcal A$ consists of finite sets only we are able to rule out the existence of delta-points in $h_{\\mathcal{A},1}$ and Daugavet-points in its dual. We also show that if $h_{\\mathcal{A},1}$ is polyhedral, then it is either (I)-polyhedral or (V)-polyhedral (in the sense of Fonf and Vesel\\'y).","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10123638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We study delta-points in Banach spaces $h_{\mathcal{A},p}$ generated by adequate families $\mathcal A$ where $1 \le p 1$ we prove that neither $h_{\mathcal{A},p}$ nor its dual contain delta-points. Under the extra assumption that $\mathcal A$ is regular, we prove that the same is true when $p=1.$ In particular the Schreier spaces and their duals fail to have delta-points. If $\mathcal A$ consists of finite sets only we are able to rule out the existence of delta-points in $h_{\mathcal{A},1}$ and Daugavet-points in its dual. We also show that if $h_{\mathcal{A},1}$ is polyhedral, then it is either (I)-polyhedral or (V)-polyhedral (in the sense of Fonf and Vesel\'y).
充分族生成Banach空间中的Delta点
我们研究了Banach空间$h{\mathcal{A},p}$中由适足族$\mathcal A$生成的delta点,其中$1\le p1$我们证明了$h}\mathical{A},p}$及其对偶都不包含delta点。在$\mathcal A$是正则的额外假设下,我们证明了当$p=1时也是如此。特别是Schreier空间及其对偶不具有delta点。如果$\mathcal A$仅由有限集组成,则我们能够排除$h{\mathcal{A},1}$中的delta点及其对偶中的Daugavet点的存在。我们还证明了如果$h{\mathcal{A},1}$是多面体,那么它要么是(I)-多面体,要么是(V)-多面体(在Foff和Vesel\'y的意义上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信