Yu Lin, Yi Bu, Hui Qiu, Xue Yao, Xianxiang Yu, G. Cui
{"title":"Dual-Use Signal Design for Radar and Communication via Joint Orthogonal Signal and Phase Modulation","authors":"Yu Lin, Yi Bu, Hui Qiu, Xue Yao, Xianxiang Yu, G. Cui","doi":"10.15918/J.JBIT1004-0579.2021.009","DOIUrl":null,"url":null,"abstract":"This paper proposes a new information modulation resorting to orthogonal signal and its phase for dual-function radar communication (DFRC) systems. Focusing on the standardized linear frequency modulation (LFM) signal by additional phase, a bank of signals enjoying satisfactory autocorrelation and cross-correlation characteristics, are generated. Then, these signals map the different information as well as their phases are also modulated to increase the communication bit rate, thus yielding a series of dual-use signals. Finally, the radar detection and communication performance of dual-use signals are also provided through numerical simulation and half-physical platform verification, confirming the effectiveness of the designed signals compared with the existing design strategy.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"20-30"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.2021.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes a new information modulation resorting to orthogonal signal and its phase for dual-function radar communication (DFRC) systems. Focusing on the standardized linear frequency modulation (LFM) signal by additional phase, a bank of signals enjoying satisfactory autocorrelation and cross-correlation characteristics, are generated. Then, these signals map the different information as well as their phases are also modulated to increase the communication bit rate, thus yielding a series of dual-use signals. Finally, the radar detection and communication performance of dual-use signals are also provided through numerical simulation and half-physical platform verification, confirming the effectiveness of the designed signals compared with the existing design strategy.