Remarks on uniform interpolation property

Pub Date : 2023-06-08 DOI:10.1093/jigpal/jzad009
Majid Alizadeh
{"title":"Remarks on uniform interpolation property","authors":"Majid Alizadeh","doi":"10.1093/jigpal/jzad009","DOIUrl":null,"url":null,"abstract":"\n A logic $\\mathcal{L}$ is said to satisfy the descending chain condition, DCC, if any descending chain of formulas in $\\mathcal{L}$ with ordering induced by $\\vdash _{\\mathcal{L}};$ eventually stops. In this short note, we first establish a general theorem, which states that if a propositional logic $\\mathcal{L}$ satisfies both DCC and has the Craig Interpolation Property, CIP, then it satisfies the Uniform Interpolation Property, UIP, as well. As a result, by using the Nishimura lattice, we give a new simply proof of uniform interpolation for $\\textbf{IPL}_2$, the two-variable fragment of Intuitionistic Propositional Logic; and one-variable uniform interpolation for $\\textbf{IPL}$. Also, we will see that the modal logics $\\textbf{S}_4$ and $\\textbf{K}_4$ do not satisfy atomic DCC.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A logic $\mathcal{L}$ is said to satisfy the descending chain condition, DCC, if any descending chain of formulas in $\mathcal{L}$ with ordering induced by $\vdash _{\mathcal{L}};$ eventually stops. In this short note, we first establish a general theorem, which states that if a propositional logic $\mathcal{L}$ satisfies both DCC and has the Craig Interpolation Property, CIP, then it satisfies the Uniform Interpolation Property, UIP, as well. As a result, by using the Nishimura lattice, we give a new simply proof of uniform interpolation for $\textbf{IPL}_2$, the two-variable fragment of Intuitionistic Propositional Logic; and one-variable uniform interpolation for $\textbf{IPL}$. Also, we will see that the modal logics $\textbf{S}_4$ and $\textbf{K}_4$ do not satisfy atomic DCC.
分享
查看原文
关于均匀插值性质的注记
如果$\mathcal{L}$中公式的任何降链由$\vdash_{\mathcal}};$引起,则逻辑$\mathcal{L}$满足降链条件DCC最终停止。在这个简短的注释中,我们首先建立了一个一般定理,该定理指出,如果命题逻辑$\mathcal{L}$同时满足DCC并具有Craig插值性质CIP,那么它也满足统一插值性质UIP。因此,通过使用Nishimura格,我们给出了$\textbf一致插值的一个新的简单证明{IPL}_2$,直觉命题逻辑的双变量片断;以及$\textbf{IPL}$的一个变量均匀插值。此外,我们将看到模态逻辑$\textbf{S}_4$和$\textbf{K}_4$不满足原子DCC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信