Chlorine doping impact on the photocatalytic and antibacterial activity of sprayed In2S3 films

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
M. Toumi, B. Tiss, N. Bouguila, D. Cristea, C. Croitoru, I. Ghiuta, A. Marin, Ioana-Laura Velicu, V. Tiron, V. Craciun, M. Kraini, S. Alaya, C. Moura, Luis Cuhna
{"title":"Chlorine doping impact on the photocatalytic and antibacterial activity of sprayed In2S3 films","authors":"M. Toumi, B. Tiss, N. Bouguila, D. Cristea, C. Croitoru, I. Ghiuta, A. Marin, Ioana-Laura Velicu, V. Tiron, V. Craciun, M. Kraini, S. Alaya, C. Moura, Luis Cuhna","doi":"10.1680/jsuin.22.01040","DOIUrl":null,"url":null,"abstract":"In this study, the surface chemistry and morphology, the photocatalytic and antibacterial potential of pure and chlorine doped indium sulfide thin films, produced by spray pyrolysis, were analyzed. The RMS roughness seems not to be significantly affected by the chlorine concentration in three of the doped films (around 12 nm). The roughness seems not to affect the characteristics of the films analyzed in this study. The samples presented a photocatalytic efficiency higher than 80%, but no correlation with the amount of Cl concentration was found. The antibacterial potential of the films was assessed against the multidrug-resistant bacteria Pseudomonas aeruginosa, responsible by serious infections, which are extremely difficult to treat in hospitals. The obtained results evidence an increase of antibacterial activity with the increase of Cl concentration. These results encourage further studies to support the potential of this material to be used in biomedical applications.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.01040","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the surface chemistry and morphology, the photocatalytic and antibacterial potential of pure and chlorine doped indium sulfide thin films, produced by spray pyrolysis, were analyzed. The RMS roughness seems not to be significantly affected by the chlorine concentration in three of the doped films (around 12 nm). The roughness seems not to affect the characteristics of the films analyzed in this study. The samples presented a photocatalytic efficiency higher than 80%, but no correlation with the amount of Cl concentration was found. The antibacterial potential of the films was assessed against the multidrug-resistant bacteria Pseudomonas aeruginosa, responsible by serious infections, which are extremely difficult to treat in hospitals. The obtained results evidence an increase of antibacterial activity with the increase of Cl concentration. These results encourage further studies to support the potential of this material to be used in biomedical applications.
氯掺杂对喷涂In2S3薄膜光催化和抗菌活性的影响
在本研究中,分析了喷雾热解法制备的纯和氯掺杂的硫化铟薄膜的表面化学和形貌、光催化和抗菌潜力。RMS粗糙度似乎没有受到三种掺杂膜中氯浓度的显著影响(约12 nm)。粗糙度似乎不会影响本研究中分析的薄膜的特性。样品的光催化效率高于80%,但与Cl浓度无关。评估了薄膜对耐多药细菌绿脓杆菌的抗菌潜力,绿脓杆菌是严重感染的罪魁祸首,在医院极难治疗。所获得的结果表明,抗菌活性随着Cl浓度的增加而增加。这些结果鼓励了进一步的研究,以支持这种材料在生物医学应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Innovations
Surface Innovations CHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍: The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace. Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信