{"title":"Another approach to the Kan–Quillen model structure","authors":"Sean Moss","doi":"10.1007/s40062-019-00247-y","DOIUrl":null,"url":null,"abstract":"<p>By careful analysis of the embedding of a simplicial set into its image under Kan’s <span>\\(\\mathop {\\mathop {\\mathsf {Ex}}^\\infty }\\)</span> functor we obtain a new and combinatorial proof that it is a weak homotopy equivalence. Moreover, we obtain a presentation of it as a <i>strong anodyne extension</i>. From this description we can quickly deduce some basic facts about <span>\\(\\mathop {\\mathop {\\mathsf {Ex}}^\\infty }\\)</span> and hence provide a new construction of the Kan–Quillen model structure on simplicial sets, one which avoids the use of topological spaces or minimal fibrations.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 1","pages":"143 - 165"},"PeriodicalIF":0.5000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00247-y","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00247-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
By careful analysis of the embedding of a simplicial set into its image under Kan’s \(\mathop {\mathop {\mathsf {Ex}}^\infty }\) functor we obtain a new and combinatorial proof that it is a weak homotopy equivalence. Moreover, we obtain a presentation of it as a strong anodyne extension. From this description we can quickly deduce some basic facts about \(\mathop {\mathop {\mathsf {Ex}}^\infty }\) and hence provide a new construction of the Kan–Quillen model structure on simplicial sets, one which avoids the use of topological spaces or minimal fibrations.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.