Another approach to the Kan–Quillen model structure

IF 0.5 4区 数学
Sean Moss
{"title":"Another approach to the Kan–Quillen model structure","authors":"Sean Moss","doi":"10.1007/s40062-019-00247-y","DOIUrl":null,"url":null,"abstract":"<p>By careful analysis of the embedding of a simplicial set into its image under Kan’s <span>\\(\\mathop {\\mathop {\\mathsf {Ex}}^\\infty }\\)</span> functor we obtain a new and combinatorial proof that it is a weak homotopy equivalence. Moreover, we obtain a presentation of it as a <i>strong anodyne extension</i>. From this description we can quickly deduce some basic facts about <span>\\(\\mathop {\\mathop {\\mathsf {Ex}}^\\infty }\\)</span> and hence provide a new construction of the Kan–Quillen model structure on simplicial sets, one which avoids the use of topological spaces or minimal fibrations.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 1","pages":"143 - 165"},"PeriodicalIF":0.5000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00247-y","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00247-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

By careful analysis of the embedding of a simplicial set into its image under Kan’s \(\mathop {\mathop {\mathsf {Ex}}^\infty }\) functor we obtain a new and combinatorial proof that it is a weak homotopy equivalence. Moreover, we obtain a presentation of it as a strong anodyne extension. From this description we can quickly deduce some basic facts about \(\mathop {\mathop {\mathsf {Ex}}^\infty }\) and hence provide a new construction of the Kan–Quillen model structure on simplicial sets, one which avoids the use of topological spaces or minimal fibrations.

Abstract Image

Kan-Quillen模型结构的另一种方法
通过对简集在Kan的\(\mathop {\mathop {\mathsf {Ex}}^\infty }\)函子下嵌入其像的详细分析,得到了简集是弱同伦等价的一个新的组合证明。此外,我们还得到了它作为强镇痛扩展的一个表示。从这个描述中,我们可以快速地推断出\(\mathop {\mathop {\mathsf {Ex}}^\infty }\)的一些基本事实,并因此提供了一种新的简单集上的Kan-Quillen模型结构的构造,这种结构避免了使用拓扑空间或最小振动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信