A landmark-based data-driven approach on 2.5D facial attractiveness computation

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shu Liu , Yang-Yu Fan , Zhe Guo , Ashok Samal , Afan Ali
{"title":"A landmark-based data-driven approach on 2.5D facial attractiveness computation","authors":"Shu Liu ,&nbsp;Yang-Yu Fan ,&nbsp;Zhe Guo ,&nbsp;Ashok Samal ,&nbsp;Afan Ali","doi":"10.1016/j.neucom.2017.01.050","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Investigating the nature and components of face attractiveness from a computational view has become an emerging topic in facial analysis research. In this paper, a multi-view (frontal and profile view, 2.5D) facial attractiveness computational model is developed to explore how face geometry affects its attractiveness. A landmark-based, data-driven method is introduced to construct a huge dimension of three kinds of geometric facial measurements, including ratios, angles, and inclinations. An incremental feature selection algorithm is proposed to systematically select the most discriminative subset of geometric features, which are finally mapped to an attractiveness score through the application of support vector regression (SVR). On a dataset of 360 </span>facial images pre-processed from BJUT-3D Face Database and an attractiveness score dataset collected from human raters, we show that the computational model performs well with low statistic error (</span><span><math><mrow><mtext>MSE</mtext><mo>=</mo><mn>0.4969</mn></mrow></math></span>) and good predictability (<span><math><mrow><msup><mtext>R</mtext><mn>2</mn></msup><mo>=</mo><mn>0.5756</mn></mrow></math></span>).</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"238 ","pages":"Pages 168-178"},"PeriodicalIF":6.5000,"publicationDate":"2017-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.neucom.2017.01.050","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231217301248","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 20

Abstract

Investigating the nature and components of face attractiveness from a computational view has become an emerging topic in facial analysis research. In this paper, a multi-view (frontal and profile view, 2.5D) facial attractiveness computational model is developed to explore how face geometry affects its attractiveness. A landmark-based, data-driven method is introduced to construct a huge dimension of three kinds of geometric facial measurements, including ratios, angles, and inclinations. An incremental feature selection algorithm is proposed to systematically select the most discriminative subset of geometric features, which are finally mapped to an attractiveness score through the application of support vector regression (SVR). On a dataset of 360 facial images pre-processed from BJUT-3D Face Database and an attractiveness score dataset collected from human raters, we show that the computational model performs well with low statistic error (MSE=0.4969) and good predictability (R2=0.5756).

基于地标的2.5D面部吸引力计算方法
从计算的角度研究面部吸引力的性质和组成已成为面部分析研究中的一个新兴课题。本文建立了一个多视图(正面和侧面视图,2.5D)面部吸引力计算模型,以探索面部几何形状如何影响其吸引力。介绍了一种基于地标的数据驱动方法来构建三种几何面部测量的巨大维度,包括比率、角度和倾斜度。提出了一种增量特征选择算法,系统地选择最具判别性的几何特征子集,并通过支持向量回归(SVR)将其映射为吸引力评分。在bjt - 3d人脸数据库预处理的360张人脸图像数据集和来自人类评分者的吸引力评分数据集上,我们表明计算模型具有较低的统计误差(MSE=0.4969)和良好的可预测性(R2=0.5756)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信