Logical Imputation to Optimize Prognostic Risk Classification in Metastatic Renal Cell Cancer

IF 1.1 Q4 ONCOLOGY
Kidney Cancer Pub Date : 2022-09-12 DOI:10.3233/kca-220007
J. S. Maurits, Loes F. M. van der Zanden, M. Diekstra, V. Ambert, D. Castellano, J. García-Donas, R. G. Troyas, H. Guchelaar, U. Jaehde, K. Junker, A. Martínez-Cardús, M. Radu, C. Rodríguez‐Antona, M. Roessler, A. Warren, T. Eisen, E. Oosterwijk, L. Kiemeney, S. Vermeulen
{"title":"Logical Imputation to Optimize Prognostic Risk Classification in Metastatic Renal Cell Cancer","authors":"J. S. Maurits, Loes F. M. van der Zanden, M. Diekstra, V. Ambert, D. Castellano, J. García-Donas, R. G. Troyas, H. Guchelaar, U. Jaehde, K. Junker, A. Martínez-Cardús, M. Radu, C. Rodríguez‐Antona, M. Roessler, A. Warren, T. Eisen, E. Oosterwijk, L. Kiemeney, S. Vermeulen","doi":"10.3233/kca-220007","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Application of the MSKCC and IMDC models is recommended for prognostication in metastatic renal cell cancer (mRCC). Patient classification in MSKCC and IMDC risk groups in real-world observational studies is often hampered by missing data on required pre-treatment characteristics. OBJECTIVE: To evaluate the effect of application of easy-to-use logical, or deductive, imputation on MSKCC and IMDC risk classification in an observational study setting. PATIENTS AND METHODS: We used data on 713 mRCC patients with first-line sunitinib treatment from our observational European multi-centre study EuroTARGET. Pre-treatment characteristics and follow-up were derived from medical files. Hospital-specific cut-off values for laboratory measurements were requested. The effect of logical imputation of missing data and consensus versus hospital-specific cut-off values on patient classification and the subsequent models’ predictive performance for progression-free and overall survival (OS) was evaluated. RESULTS: 45% of the patients had missing data for≥1 pre-treatment characteristic for either model. Still, 72% of all patients could be unambiguously classified using logical imputation. Use of consensus instead of hospital-specific cut-offs led to a shift in risk group for 12% and 7% of patients for the MSKCC and IMDC model, respectively. Using logical imputation or other cut-offs did not influence the models’ predictive performance. These were in line with previous reports (c-statistic ∼0.64 for OS) CONCLUSIONS: Logical imputation leads to a substantial increase in the proportion of patients that can be correctly classified into poor and intermediate MSKCC and IMDC risk groups in observational studies and its use in the field should be advocated.","PeriodicalId":17823,"journal":{"name":"Kidney Cancer","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kca-220007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND: Application of the MSKCC and IMDC models is recommended for prognostication in metastatic renal cell cancer (mRCC). Patient classification in MSKCC and IMDC risk groups in real-world observational studies is often hampered by missing data on required pre-treatment characteristics. OBJECTIVE: To evaluate the effect of application of easy-to-use logical, or deductive, imputation on MSKCC and IMDC risk classification in an observational study setting. PATIENTS AND METHODS: We used data on 713 mRCC patients with first-line sunitinib treatment from our observational European multi-centre study EuroTARGET. Pre-treatment characteristics and follow-up were derived from medical files. Hospital-specific cut-off values for laboratory measurements were requested. The effect of logical imputation of missing data and consensus versus hospital-specific cut-off values on patient classification and the subsequent models’ predictive performance for progression-free and overall survival (OS) was evaluated. RESULTS: 45% of the patients had missing data for≥1 pre-treatment characteristic for either model. Still, 72% of all patients could be unambiguously classified using logical imputation. Use of consensus instead of hospital-specific cut-offs led to a shift in risk group for 12% and 7% of patients for the MSKCC and IMDC model, respectively. Using logical imputation or other cut-offs did not influence the models’ predictive performance. These were in line with previous reports (c-statistic ∼0.64 for OS) CONCLUSIONS: Logical imputation leads to a substantial increase in the proportion of patients that can be correctly classified into poor and intermediate MSKCC and IMDC risk groups in observational studies and its use in the field should be advocated.
优化癌症转移性肾细胞预后风险分类的逻辑推理
背景:建议应用MSKCC和IMDC模型预测转移性肾细胞癌症(mRCC)。在现实世界的观察性研究中,MSKCC和IMDC风险组的患者分类经常因所需治疗前特征的数据缺失而受到阻碍。目的:评估在观察性研究环境中应用易于使用的逻辑或演绎插补对MSKCC和IMDC风险分类的影响。患者和方法:我们使用了来自欧洲多中心观察性研究EuroTARGET的713名接受舒尼替尼一线治疗的mRCC患者的数据。治疗前特征和随访来源于医疗档案。要求提供医院特定的实验室测量截止值。评估了缺失数据的逻辑插补和一致性与医院特定截止值对患者分类的影响,以及后续模型对无进展和总生存率(OS)的预测性能。结果:45%的患者在任一模型的治疗前特征≥1的数据缺失。尽管如此,72%的患者可以使用逻辑插补进行明确的分类。在MSKCC和IMDC模型中,使用共识而不是医院特定的截止值分别导致12%和7%的患者的风险组发生变化。使用逻辑插补或其他截断不会影响模型的预测性能。这些与之前的报告一致(OS的c统计量~0.64)结论:在观察性研究中,逻辑插补导致可正确划分为MSKCC和IMDC低风险组和中等风险组的患者比例大幅增加,应提倡在该领域使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kidney Cancer
Kidney Cancer Multiple-
CiteScore
0.90
自引率
8.30%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信