{"title":"Direct products, overlapping actions, and critical regularity","authors":"Sang-hyun Kim, T. Koberda, C. Rivas","doi":"10.3934/jmd.2021009","DOIUrl":null,"url":null,"abstract":"We address the problem of computing the critical regularity of groups of homeomorphisms of the interval. Our main result is that if $H$ and $K$ are two non-solvable groups then a $C^1$ actions of $H\\times K$ on a compact interval $I$ cannot be {\\em overlapping}, which by definition means that there must be non-trivial $h\\in H$ and $k\\in K$ with disjoint support. As a corollary we prove that the right-angled Artin group $(F_2\\times F_2)*\\mathbb{Z}$ has critical regularity one, which is to say that it admits a faithful $C^1$ action on $I$, but no faithful $C^{1,\\tau}$ action for $\\tau>0$. This is the first explicit example of a group of exponential growth whose critical regularity is finite, known exactly, and achieved. Another corollary we get is that Thompson's group $F$ does not admit a $C^1$ overlapping action on $I$, so that $F*\\mathbb{Z}$ is a new example of a locally indicable group admitting no faithful $C^1$--action on $I$.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2021009","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
We address the problem of computing the critical regularity of groups of homeomorphisms of the interval. Our main result is that if $H$ and $K$ are two non-solvable groups then a $C^1$ actions of $H\times K$ on a compact interval $I$ cannot be {\em overlapping}, which by definition means that there must be non-trivial $h\in H$ and $k\in K$ with disjoint support. As a corollary we prove that the right-angled Artin group $(F_2\times F_2)*\mathbb{Z}$ has critical regularity one, which is to say that it admits a faithful $C^1$ action on $I$, but no faithful $C^{1,\tau}$ action for $\tau>0$. This is the first explicit example of a group of exponential growth whose critical regularity is finite, known exactly, and achieved. Another corollary we get is that Thompson's group $F$ does not admit a $C^1$ overlapping action on $I$, so that $F*\mathbb{Z}$ is a new example of a locally indicable group admitting no faithful $C^1$--action on $I$.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.