Localization formulas of cohomology intersection numbers

Pub Date : 2021-04-26 DOI:10.2969/jmsj/87738773
Saiei-Jaeyeong Matsubara-Heo
{"title":"Localization formulas of cohomology intersection numbers","authors":"Saiei-Jaeyeong Matsubara-Heo","doi":"10.2969/jmsj/87738773","DOIUrl":null,"url":null,"abstract":"We revisit the localization formulas of cohomology intersection numbers associated to a logarithmic connection. The main contribution of this paper is threefold: we prove the localization formula of the cohomology intersection number of logarithmic forms in terms of residue of a connection; we prove that the leading term of the Laurent expansion of the cohomology intersection number is Grothendieck residue when the connection is hypergeometric; and we prove that the leading term of stringy integral discussed by Arkani-Hamed, He and Lam is nothing but the self-cohomology intersection number of the canonical form.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/87738773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We revisit the localization formulas of cohomology intersection numbers associated to a logarithmic connection. The main contribution of this paper is threefold: we prove the localization formula of the cohomology intersection number of logarithmic forms in terms of residue of a connection; we prove that the leading term of the Laurent expansion of the cohomology intersection number is Grothendieck residue when the connection is hypergeometric; and we prove that the leading term of stringy integral discussed by Arkani-Hamed, He and Lam is nothing but the self-cohomology intersection number of the canonical form.
分享
查看原文
上同调交数的局部化公式
我们重新讨论了与对数连接相关的上同调交集的局部化公式。本文的主要贡献有三个方面:我们用连接的余数证明了对数形式上同调交集的局部化公式;我们证明了当连接是超几何时,上同调交集数的Laurent展开的前导项是Grothendieck残数;证明了Arkani-Hamed、He和Lam讨论的弦积分的前导项只不过是正则形式的自上同调交数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信