A Hermite spline approach for modelling population mortality

IF 1.5 Q3 BUSINESS, FINANCE
Sixian Tang, Jackie Li, L. Tickle
{"title":"A Hermite spline approach for modelling population mortality","authors":"Sixian Tang, Jackie Li, L. Tickle","doi":"10.1017/s1748499522000173","DOIUrl":null,"url":null,"abstract":"\n One complication in mortality modelling is capturing the impact of risk factors that contribute to mortality differentials between different populations. Evidence has suggested that mortality differentials tend to diminish over age. Classical methods such as the Gompertz law attempt to capture mortality patterns over age using intercept and slope parameters, possibly causing an unjustified mortality crossover at advanced ages when applied independently to different populations. In recent research, Richards (Scandinavian Actuarial Journal2020(2), 110–127) proposed a Hermite spline (HS) model that describes the age pattern of mortality differentials using one parameter and circumvents an unreasonable crossover by default. The original HS model was applied to pension data at individual level in the age dimension only. This paper extends the method to model population mortality in both age and period dimensions. Our results indicate that in addition to possessing desirable fitting properties, the HS approach can produce accurate mortality forecasts, compared with the Gompertz and P-splines models.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499522000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

One complication in mortality modelling is capturing the impact of risk factors that contribute to mortality differentials between different populations. Evidence has suggested that mortality differentials tend to diminish over age. Classical methods such as the Gompertz law attempt to capture mortality patterns over age using intercept and slope parameters, possibly causing an unjustified mortality crossover at advanced ages when applied independently to different populations. In recent research, Richards (Scandinavian Actuarial Journal2020(2), 110–127) proposed a Hermite spline (HS) model that describes the age pattern of mortality differentials using one parameter and circumvents an unreasonable crossover by default. The original HS model was applied to pension data at individual level in the age dimension only. This paper extends the method to model population mortality in both age and period dimensions. Our results indicate that in addition to possessing desirable fitting properties, the HS approach can produce accurate mortality forecasts, compared with the Gompertz and P-splines models.
用于人口死亡率建模的Hermite样条方法
死亡率建模的一个复杂因素是捕捉导致不同人群死亡率差异的风险因素的影响。有证据表明,死亡率差异往往随着年龄的增长而缩小。Gompertz定律等经典方法试图使用截距和斜率参数来捕捉随年龄变化的死亡率模式,当独立应用于不同人群时,可能会导致高龄死亡率的不合理交叉。在最近的研究中,Richards(斯堪的纳维亚精算杂志2020(2),110–127)提出了一种Hermite样条(HS)模型,该模型使用一个参数描述死亡率差异的年龄模式,并在默认情况下避免了不合理的交叉。最初的HS模型仅适用于年龄维度的个人养老金数据。本文将该方法扩展到年龄和时期两个维度的人口死亡率模型。我们的结果表明,与Gompertz和P样条模型相比,HS方法除了具有理想的拟合特性外,还可以产生准确的死亡率预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信