Matrix-Variate Beta Generator - Developments and Application

IF 0.1 Q4 STATISTICS & PROBABILITY
J. V. Niekerk, A. Bekker, M. Arashi
{"title":"Matrix-Variate Beta Generator - Developments and Application","authors":"J. V. Niekerk, A. Bekker, M. Arashi","doi":"10.52547/jirss.20.1.289","DOIUrl":null,"url":null,"abstract":". Matrix-variate beta distributions are applied in di ff erent fields of hypothesis testing, multivariate correlation analysis, zero regression, canonical correlation analysis and etc. A methodology is proposed to generate matrix-variate beta generator distributions by combining the matrix-variate beta kernel with an unknown function of the trace operator. Several statistical characteristics, extensions and developments are presented. Special members are then used in a univariate and multivariate Bayesian analysis setting. These models are fitted to simulated and real datasets, and their fitting and performance are compared to well-established competitors.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jirss.20.1.289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

. Matrix-variate beta distributions are applied in di ff erent fields of hypothesis testing, multivariate correlation analysis, zero regression, canonical correlation analysis and etc. A methodology is proposed to generate matrix-variate beta generator distributions by combining the matrix-variate beta kernel with an unknown function of the trace operator. Several statistical characteristics, extensions and developments are presented. Special members are then used in a univariate and multivariate Bayesian analysis setting. These models are fitted to simulated and real datasets, and their fitting and performance are compared to well-established competitors.
矩阵变分贝塔生成器的发展与应用
矩阵变量β分布应用于假设检验、多元相关分析、零回归、规范相关分析等不同领域。提出了一种通过将矩阵变量β核与跟踪算子的未知函数相结合来生成矩阵变量β生成器分布的方法。介绍了几个统计学特征、扩展和发展。然后在单变量和多变量贝叶斯分析设置中使用特殊成员。这些模型适用于模拟和真实数据集,并将其适用性和性能与成熟的竞争对手进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信