{"title":"CONCAVITY PROPERTY OF MINIMAL INTEGRALS WITH LEBESGUE MEASURABLE GAIN","authors":"Q. Guan, Zheng Yuan","doi":"10.1017/nmj.2023.12","DOIUrl":null,"url":null,"abstract":"\n In this article, we present a concavity property of the minimal \n \n \n \n$L^{2}$\n\n \n integrals related to multiplier ideal sheaves with Lebesgue measurable gain. As applications, we give necessary conditions for our concavity degenerating to linearity, characterizations for 1-dimensional case, and a characterization for the holding of the equality in optimal \n \n \n \n$L^2$\n\n \n extension problem on open Riemann surfaces with weights may not be subharmonic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this article, we present a concavity property of the minimal
$L^{2}$
integrals related to multiplier ideal sheaves with Lebesgue measurable gain. As applications, we give necessary conditions for our concavity degenerating to linearity, characterizations for 1-dimensional case, and a characterization for the holding of the equality in optimal
$L^2$
extension problem on open Riemann surfaces with weights may not be subharmonic.