Stochastic analysis for vector-valued generalized grey Brownian motion

IF 0.4 Q4 STATISTICS & PROBABILITY
W. Bock, M. Grothaus, Karlo S. Orge
{"title":"Stochastic analysis for vector-valued generalized grey Brownian motion","authors":"W. Bock, M. Grothaus, Karlo S. Orge","doi":"10.1090/tpms/1184","DOIUrl":null,"url":null,"abstract":"In this article, we show that the standard vector-valued generalization of a generalized grey Brownian motion (ggBm) has independent components if and only if it is a fractional Brownian motion. In order to extend ggBm with independent components, we introduce a vector-valued generalized grey Brownian motion (vggBm). The characteristic function of the corresponding measure is introduced as the product of the characteristic functions of the one-dimensional case. We show that for this measure, the Appell system and a calculus of generalized functions or distributions are accessible. We characterize these distributions with suitable transformations and give a \n\n \n d\n d\n \n\n-dimensional Donsker’s delta function as an example for such distributions. From there, we show the existence of local times and self-intersection local times of vggBm as distributions under some constraints, and compute their corresponding generalized expectations. At the end, we solve a system of linear SDEs driven by a vggBm noise in \n\n \n d\n d\n \n\n dimensions.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

In this article, we show that the standard vector-valued generalization of a generalized grey Brownian motion (ggBm) has independent components if and only if it is a fractional Brownian motion. In order to extend ggBm with independent components, we introduce a vector-valued generalized grey Brownian motion (vggBm). The characteristic function of the corresponding measure is introduced as the product of the characteristic functions of the one-dimensional case. We show that for this measure, the Appell system and a calculus of generalized functions or distributions are accessible. We characterize these distributions with suitable transformations and give a d d -dimensional Donsker’s delta function as an example for such distributions. From there, we show the existence of local times and self-intersection local times of vggBm as distributions under some constraints, and compute their corresponding generalized expectations. At the end, we solve a system of linear SDEs driven by a vggBm noise in d d dimensions.
向量值广义灰布朗运动的随机分析
本文证明了广义灰布朗运动(ggBm)的标准向量值推广具有独立分量,当且仅当它是分数布朗运动。为了扩展具有独立分量的ggBm,我们引入了一个向量值广义灰布朗运动(vggBm)。相应测度的特征函数被引入为一维情形的特征函数的乘积。我们证明了对于这个测度,Appel系统和广义函数或分布的微积分是可访问的。我们用适当的变换刻画了这些分布,并给出了一个d维Donsker的delta函数作为这种分布的例子。由此,我们证明了vggBm的局部时间和自交局部时间作为分布在某些约束下的存在性,并计算了它们相应的广义期望。最后,我们在d维中求解了一个由vggBm噪声驱动的线性SDE系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信