Generative Design of Soft Robot Actuators Using ESP

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Venter, I. Joubert
{"title":"Generative Design of Soft Robot Actuators Using ESP","authors":"M. Venter, I. Joubert","doi":"10.3390/mca28020053","DOIUrl":null,"url":null,"abstract":"Soft robotics is an emerging field that leverages the compliant nature of materials to control shape and behaviour. However, designing soft robots presents a challenge, as they do not have discrete points of articulation and instead articulate through deformation in whole regions of the robot. This results in a vast, unexplored design space with few established design methods. This paper presents a practical generative design process that combines the Encapsulation, Syllabus, and Pandamonium method with a reduced-order model to produce results comparable to the existing state-of-the-art in reduced design time while including the human designer meaningfully in the design process and facilitating the inclusion of other numerical techniques such as Markov chain Monte Carlo methods. Using a combination of reduced-order models, L-systems, MCMC, curve matching, and optimisation, we demonstrate that our method can produce functional 2D articulating soft robot designs in less than 1 s, a significant reduction in design time compared to monolithic methods, which can take several days. Additionally, we qualitatively show how to extend our approach to produce more complex 3D robots, such as an articulating tentacle with multiple grippers.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Soft robotics is an emerging field that leverages the compliant nature of materials to control shape and behaviour. However, designing soft robots presents a challenge, as they do not have discrete points of articulation and instead articulate through deformation in whole regions of the robot. This results in a vast, unexplored design space with few established design methods. This paper presents a practical generative design process that combines the Encapsulation, Syllabus, and Pandamonium method with a reduced-order model to produce results comparable to the existing state-of-the-art in reduced design time while including the human designer meaningfully in the design process and facilitating the inclusion of other numerical techniques such as Markov chain Monte Carlo methods. Using a combination of reduced-order models, L-systems, MCMC, curve matching, and optimisation, we demonstrate that our method can produce functional 2D articulating soft robot designs in less than 1 s, a significant reduction in design time compared to monolithic methods, which can take several days. Additionally, we qualitatively show how to extend our approach to produce more complex 3D robots, such as an articulating tentacle with multiple grippers.
基于ESP的软机器人执行器的生成设计
软机器人是一个新兴领域,它利用材料的顺应性来控制形状和行为。然而,设计软机器人是一个挑战,因为它们没有离散的关节点,而是通过机器人整个区域的变形进行关节连接。这导致了一个广阔的、未经探索的设计空间,几乎没有既定的设计方法。本文提出了一个实用的生成设计过程,以及具有降阶模型的Pandamonium方法,以在减少的设计时间内产生与现有技术相当的结果,同时将人类设计者有意义地包括在设计过程中,并促进包括其他数值技术,如马尔可夫链蒙特卡罗方法。使用降阶模型、L系统、MCMC、曲线匹配和优化的组合,我们证明了我们的方法可以在不到1秒的时间内产生功能性2D关节软机器人设计,与可能需要几天时间的单片方法相比,设计时间显著缩短。此外,我们还定性地展示了如何扩展我们的方法来生产更复杂的3D机器人,例如带有多个抓手的关节触手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信