{"title":"Hermitian composition operators on Hardy-Smirnov spaces","authors":"Gajath Gunatillake","doi":"10.1515/conop-2017-0002","DOIUrl":null,"url":null,"abstract":"Abstract Let Ω be an open simply connected proper subset of the complex plane and φ an analytic self map of Ω. If f is in the Hardy-Smirnov space defined on Ω, then the operator that takes f to f º φ is a composition operator. We show that for any Ω, analytic self maps that induce bounded Hermitian composition operators are of the form Φ(w) = aw + b where a is a real number. For ceratin Ω, we completely describe values of a and b that induce bounded Hermitian composition operators.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"4 1","pages":"17 - 7"},"PeriodicalIF":0.3000,"publicationDate":"2017-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2017-0002","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2017-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Let Ω be an open simply connected proper subset of the complex plane and φ an analytic self map of Ω. If f is in the Hardy-Smirnov space defined on Ω, then the operator that takes f to f º φ is a composition operator. We show that for any Ω, analytic self maps that induce bounded Hermitian composition operators are of the form Φ(w) = aw + b where a is a real number. For ceratin Ω, we completely describe values of a and b that induce bounded Hermitian composition operators.