Darbo type best proximity point (pair) results using measure of noncompactness with application

Pub Date : 2022-01-02 DOI:10.24193/fpt-ro.2022.1.16
M. Gabeleh, D. Patel, P. Patle
{"title":"Darbo type best proximity point (pair) results using measure of noncompactness with application","authors":"M. Gabeleh, D. Patel, P. Patle","doi":"10.24193/fpt-ro.2022.1.16","DOIUrl":null,"url":null,"abstract":". Primarily this work intends to investigate the existence of best proximity points (pairs) for new classes of cyclic (noncyclic) mappings via simulation functions and measure of noncompact-ness. Use of different classes of additional functions make it possible to generalize the contractive inequalities in this work. As an application of the main conclusions, a survey for the existence of optimal solutions of a system of integro-differential equations under some new conditions is presented. As an application of our existence results, we establish the existence of a solution for the following system of integro-differential equations","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/fpt-ro.2022.1.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

. Primarily this work intends to investigate the existence of best proximity points (pairs) for new classes of cyclic (noncyclic) mappings via simulation functions and measure of noncompact-ness. Use of different classes of additional functions make it possible to generalize the contractive inequalities in this work. As an application of the main conclusions, a survey for the existence of optimal solutions of a system of integro-differential equations under some new conditions is presented. As an application of our existence results, we establish the existence of a solution for the following system of integro-differential equations
分享
查看原文
Darbo型最佳邻近点(对)的非紧性测度结果及其应用
这项工作主要旨在通过模拟函数和非紧性度量来研究新类别的循环(非循环)映射的最佳邻近点(对)的存在性。使用不同类别的附加函数可以推广这项工作中的压缩不等式。作为主要结论的一个应用,考察了一类积分微分方程组在某些新条件下最优解的存在性。作为我们存在性结果的一个应用,我们建立了以下积分微分方程组解的存在性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信