{"title":"Sedimentary architecture and glacial hydrodynamic significance of the stratified Oak Ridges Moraine, southern Ontario, Canada","authors":"David R. Sharpe, Hazen A. J. Russell","doi":"10.1111/bor.12612","DOIUrl":null,"url":null,"abstract":"<p>High-quality subsurface data provide new insights into the formation of Oak Ridges Moraine (ORM), an ~80 km<sup>3</sup> sequence of stratified meltwater deposits resting >200 m above adjacent Lake Ontario. The ORM sedimentary succession comprises a three-part regional architecture: (i) ~north–south channel sand–gravel; (ii) channel-capping rhythmites; and (iii) east–west ridge sediments. The ORM depositional sequence overlies a regional unconformity with a cross-cutting channel network resulting from ~north–south meltwater floods that transitioned progressively (falling stage) from a ~NNE to ENE flow direction (parallels Lake Ontario depression). Seismic profiles delineate the channels and channel fill characteristics of bank-to-bank channel sedimentation of thick gradational gravel–sand–mud sequences. Channel-capping mud (~100–236 rhythmites) within multiple channels beneath the ORM landform mark a widespread interval of low-energy, seasonally controlled subglacial pond deposition. During this quiescent period ice-sheet thickness adjusted to flood-induced stretching/thinning and re-profiled slopes. New ice gradients led to east–west flow and deposition of the overlying third element, a sequence of high-energy confined esker–fan sediments along ORM ridge. Close, sequential timing (~329 varve years) of channel, basin and ridge-forming architectural elements supports naming this assemblage the ORM formation. Proposed ORM floods are analogous to Icelandic jökulhlaups based on the size, geometry and sedimentology. The observed rhythmite interval between flood events represents a short period (~236 years) of regional meltwater storage prior to east–west ORM flooding. The ORM channel and overlying esker-fan sediment ridge represent two closely timed meltwater drainage events rather than formation by coalescing ice streams. The scale and timing of the ORM flood events are linked to rapid sea-level rise, ~13.5 ka BP. This high-resolution ORM sedimentological record may provide insights into depositional and glaciogenic controls of other large, stratified moraines. The ORM data indicate deposition in response to hydrodynamic events (outbreak floods, re-profiled ice) rather than direct climate forcing.</p>","PeriodicalId":9184,"journal":{"name":"Boreas","volume":"52 3","pages":"341-380"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bor.12612","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boreas","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bor.12612","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-quality subsurface data provide new insights into the formation of Oak Ridges Moraine (ORM), an ~80 km3 sequence of stratified meltwater deposits resting >200 m above adjacent Lake Ontario. The ORM sedimentary succession comprises a three-part regional architecture: (i) ~north–south channel sand–gravel; (ii) channel-capping rhythmites; and (iii) east–west ridge sediments. The ORM depositional sequence overlies a regional unconformity with a cross-cutting channel network resulting from ~north–south meltwater floods that transitioned progressively (falling stage) from a ~NNE to ENE flow direction (parallels Lake Ontario depression). Seismic profiles delineate the channels and channel fill characteristics of bank-to-bank channel sedimentation of thick gradational gravel–sand–mud sequences. Channel-capping mud (~100–236 rhythmites) within multiple channels beneath the ORM landform mark a widespread interval of low-energy, seasonally controlled subglacial pond deposition. During this quiescent period ice-sheet thickness adjusted to flood-induced stretching/thinning and re-profiled slopes. New ice gradients led to east–west flow and deposition of the overlying third element, a sequence of high-energy confined esker–fan sediments along ORM ridge. Close, sequential timing (~329 varve years) of channel, basin and ridge-forming architectural elements supports naming this assemblage the ORM formation. Proposed ORM floods are analogous to Icelandic jökulhlaups based on the size, geometry and sedimentology. The observed rhythmite interval between flood events represents a short period (~236 years) of regional meltwater storage prior to east–west ORM flooding. The ORM channel and overlying esker-fan sediment ridge represent two closely timed meltwater drainage events rather than formation by coalescing ice streams. The scale and timing of the ORM flood events are linked to rapid sea-level rise, ~13.5 ka BP. This high-resolution ORM sedimentological record may provide insights into depositional and glaciogenic controls of other large, stratified moraines. The ORM data indicate deposition in response to hydrodynamic events (outbreak floods, re-profiled ice) rather than direct climate forcing.
期刊介绍:
Boreas has been published since 1972. Articles of wide international interest from all branches of Quaternary research are published. Biological as well as non-biological aspects of the Quaternary environment, in both glaciated and non-glaciated areas, are dealt with: Climate, shore displacement, glacial features, landforms, sediments, organisms and their habitat, and stratigraphical and chronological relationships.
Anticipated international interest, at least within a continent or a considerable part of it, is a main criterion for the acceptance of papers. Besides articles, short items like discussion contributions and book reviews are published.