A. Keenan, Megan L. Wojciechowicz, Zichen Wang, Kathleen M. Jagodnik, S. L. Jenkins, Alexander Lachmann, Avi Ma’ayan
{"title":"Connectivity Mapping: Methods and Applications","authors":"A. Keenan, Megan L. Wojciechowicz, Zichen Wang, Kathleen M. Jagodnik, S. L. Jenkins, Alexander Lachmann, Avi Ma’ayan","doi":"10.1146/ANNUREV-BIODATASCI-072018-021211","DOIUrl":null,"url":null,"abstract":"Connectivity mapping resources consist of signatures representing changes in cellular state following systematic small-molecule, disease, gene, or other form of perturbations. Such resources enable the characterization of signatures from novel perturbations based on similarity; provide a global view of the space of many themed perturbations; and allow the ability to predict cellular, tissue, and organismal phenotypes for perturbagens. A signature search engine enables hypothesis generation by finding connections between query signatures and the database of signatures. This framework has been used to identify connections between small molecules and their targets, to discover cell-specific responses to perturbations and ways to reverse disease expression states with small molecules, and to predict small-molecule mimickers for existing drugs. This review provides a historical perspective and the current state of connectivity mapping resources with a focus on both methodology and community implementations.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-072018-021211","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV-BIODATASCI-072018-021211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 34
Abstract
Connectivity mapping resources consist of signatures representing changes in cellular state following systematic small-molecule, disease, gene, or other form of perturbations. Such resources enable the characterization of signatures from novel perturbations based on similarity; provide a global view of the space of many themed perturbations; and allow the ability to predict cellular, tissue, and organismal phenotypes for perturbagens. A signature search engine enables hypothesis generation by finding connections between query signatures and the database of signatures. This framework has been used to identify connections between small molecules and their targets, to discover cell-specific responses to perturbations and ways to reverse disease expression states with small molecules, and to predict small-molecule mimickers for existing drugs. This review provides a historical perspective and the current state of connectivity mapping resources with a focus on both methodology and community implementations.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.