Second Degree Generalized Successive Over Relaxation Method for Solving System of Linear Equations

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Firew Hailu, G. Gonfa, Hailu Muleta Chemeda
{"title":"Second Degree Generalized Successive Over Relaxation Method for Solving System of Linear Equations","authors":"Firew Hailu, G. Gonfa, Hailu Muleta Chemeda","doi":"10.4314/MEJS.V12I1.4","DOIUrl":null,"url":null,"abstract":"In this paper, a second degree generalized successive over relaxation iterative method for solving system of linear equations based on the decomposition  \nA= Dm+Lm+Um  is presented and the convergence properties of the proposed method are discussed. Two numerical examples are considered to show the efficiency of the proposed method. The results presented in tables show that the Second Degree Generalized Successive Over Relaxation Iterative method is more efficient than the other methods considered based on number of iterations, computational running time and accuracy. Keywords: Second Degree, Generalized Gauss Seidel, Successive over relaxation, Convergence.","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":"12 1","pages":"60-71"},"PeriodicalIF":0.3000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/MEJS.V12I1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a second degree generalized successive over relaxation iterative method for solving system of linear equations based on the decomposition  A= Dm+Lm+Um  is presented and the convergence properties of the proposed method are discussed. Two numerical examples are considered to show the efficiency of the proposed method. The results presented in tables show that the Second Degree Generalized Successive Over Relaxation Iterative method is more efficient than the other methods considered based on number of iterations, computational running time and accuracy. Keywords: Second Degree, Generalized Gauss Seidel, Successive over relaxation, Convergence.
求解线性方程组的二阶广义逐次过松弛方法
本文提出了一种基于分解a=Dm+Lm+Um求解线性方程组的二阶广义逐次过松弛迭代方法,并讨论了该方法的收敛性。通过两个算例验证了该方法的有效性。表中的结果表明,基于迭代次数、计算运行时间和精度,二阶广义逐次过松弛迭代方法比其他方法更有效。关键词:二阶,广义高斯-塞德尔,逐次超松弛,收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Momona Ethiopian Journal of Science
Momona Ethiopian Journal of Science MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
13
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信