Reflective prolate-spheroidal operators and the adelic Grassmannian

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
W. Riley Casper, F. Alberto Grünbaum, Milen Yakimov, Ignacio Zurrián
{"title":"Reflective prolate-spheroidal operators and the adelic Grassmannian","authors":"W. Riley Casper,&nbsp;F. Alberto Grünbaum,&nbsp;Milen Yakimov,&nbsp;Ignacio Zurrián","doi":"10.1002/cpa.22118","DOIUrl":null,"url":null,"abstract":"<p>Beginning with the work of Landau, Pollak and Slepian in the 1960s on time-band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory, and integrable systems. Previously, such pairs were constructed by ad hoc methods, which essentially worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every point <i>W</i> of Wilson's infinite dimensional adelic Grassmannian <math>\n <semantics>\n <mrow>\n <msup>\n <mi>Gr</mi>\n <mi>ad</mi>\n </msup>\n </mrow>\n <annotation>$\\operatorname{{\\mathrm{Gr}^{\\mathrm{ad}}}}$</annotation>\n </semantics></math> gives rise to an integral operator <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>W</mi>\n </msub>\n <annotation>$T_W$</annotation>\n </semantics></math>, acting on <math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(\\Gamma )$</annotation>\n </semantics></math> for a contour <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>⊂</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$\\Gamma \\subset \\mathbb {C}$</annotation>\n </semantics></math>, which reflects a differential operator with rational coefficients <math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>z</mi>\n <mo>,</mo>\n <msub>\n <mi>∂</mi>\n <mi>z</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$R(z, \\partial _z)$</annotation>\n </semantics></math> in the sense that <math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>z</mi>\n <mo>,</mo>\n <mo>−</mo>\n <msub>\n <mi>∂</mi>\n <mi>z</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>∘</mo>\n <msub>\n <mi>T</mi>\n <mi>W</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>T</mi>\n <mi>W</mi>\n </msub>\n <mo>∘</mo>\n <mi>R</mi>\n <mrow>\n <mo>(</mo>\n <mi>w</mi>\n <mo>,</mo>\n <msub>\n <mi>∂</mi>\n <mi>w</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R(-z,-\\partial _z) \\circ T_W = T_W \\circ R(w, \\partial _w)$</annotation>\n </semantics></math> on a dense subset of <math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(\\Gamma )$</annotation>\n </semantics></math>. By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ψ</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\psi _W(x,z)$</annotation>\n </semantics></math>. The exact size of this algebra with respect to a bifiltration is in turn determined using algebro-geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property above in place of plain commutativity. Furthermore, we prove that the time-band limited operators of the generalized Laplace transforms with kernels given by the rank one bispectral functions <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ψ</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mo>−</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\psi _W(x,-z)$</annotation>\n </semantics></math> always reflect a differential operator. A 90° rotation argument is used to prove that the time-band limited operators of the generalized Fourier transforms with kernels <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ψ</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>i</mi>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\psi _W(x, iz)$</annotation>\n </semantics></math> admit a commuting differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22118","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7

Abstract

Beginning with the work of Landau, Pollak and Slepian in the 1960s on time-band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory, and integrable systems. Previously, such pairs were constructed by ad hoc methods, which essentially worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every point W of Wilson's infinite dimensional adelic Grassmannian Gr ad $\operatorname{{\mathrm{Gr}^{\mathrm{ad}}}}$ gives rise to an integral operator T W $T_W$ , acting on L 2 ( Γ ) $L^2(\Gamma )$ for a contour Γ C $\Gamma \subset \mathbb {C}$ , which reflects a differential operator with rational coefficients R ( z , z ) $R(z, \partial _z)$ in the sense that R ( z , z ) T W = T W R ( w , w ) $R(-z,-\partial _z) \circ T_W = T_W \circ R(w, \partial _w)$ on a dense subset of L 2 ( Γ ) $L^2(\Gamma )$ . By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function ψ W ( x , z ) $\psi _W(x,z)$ . The exact size of this algebra with respect to a bifiltration is in turn determined using algebro-geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property above in place of plain commutativity. Furthermore, we prove that the time-band limited operators of the generalized Laplace transforms with kernels given by the rank one bispectral functions ψ W ( x , z ) $\psi _W(x,-z)$ always reflect a differential operator. A 90° rotation argument is used to prove that the time-band limited operators of the generalized Fourier transforms with kernels ψ W ( x , i z ) $\psi _W(x, iz)$ admit a commuting differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s.

反射椭球算子与格拉斯曼
从Landau、Pollak和Slepian在20世纪60年代关于时间带限制的工作开始,积分和微分算子的交换对在信号处理、随机矩阵理论和可积系统中发挥了关键作用。以前,这种对是通过特设方法构建的,这基本上是有效的,因为可以通过直接计算找到低阶的通勤算子。我们描述了一种解决这些问题的一般方法,证明了Wilson的无穷维adelic Grassmannian Grad$\算子名{{\mathrm{Gr}^{\math rm{ad}}}}$的每一点W都产生了一个积分算子TW$T_W$,作用于轮廓Γ⊂C$\Gamma\subet \mathbb{C}$上的L2(Γ)$L^2(\Gamma)$,它反映了在L2(Γ)$L^2(\Gamma。利用分析方法和可积系统的方法,我们证明了反射微分算子可以由相关联的双谱函数ψW(x,z)$\psi_W(x,z)$的傅立叶代数构造。该代数相对于二重过滤的确切大小反过来使用代数几何方法来确定。格拉斯曼的四个对合的内在性质自然地导致我们考虑上面的反射性质来代替普通交换性。此外,我们证明了具有由秩一双谱函数ψW(x,−z)$\psi_W(x,-z)$给出的核的广义拉普拉斯变换的时间带限制算子总是反映微分算子。使用90°旋转自变量来证明具有核的广义傅立叶变换的时间带限制算子ψW(x,iz)$\psi_W(x,iz)$允许交换微分算子。这些方法产生了大量具有长椭球性质的积分算子,这些算子与Krichever在20世纪70年代末引入的KP层次的所有有理解在无穷远处消失的波函数有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信