Zheng Zhu, Yuquan Zhang, Shuoshuo Zhang, A. Adam, C. Min, H. P. Urbach, Xiaocong Yuan
{"title":"Nonlinear optical trapping effect with reverse saturable absorption","authors":"Zheng Zhu, Yuquan Zhang, Shuoshuo Zhang, A. Adam, C. Min, H. P. Urbach, Xiaocong Yuan","doi":"10.1117/1.AP.5.4.046006","DOIUrl":null,"url":null,"abstract":"Abstract. Nonlinear responses of nanoparticles induce enlightening phenomena in optical tweezers. With the gradual increase in optical intensity, effects from saturable absorption (SA) and reverse SA (RSA) arise in sequence and thereby modulate the nonlinear properties of materials. In current nonlinear optical traps, however, the underlying physical mechanism is mainly confined within the SA regime because threshold values required to excite the RSA regime are extremely high. Herein, we demonstrate, both in theory and experiment, nonlinear optical tweezing within the RSA regime, proving that a fascinating composite trapping state is achievable at ultrahigh intensities through an optical force reversal induced through nonlinear absorption. Integrated results help in perfecting the nonlinear optical trapping system, thereby providing beneficial guidance for wider applications of nonlinear optics.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.4.046006","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. Nonlinear responses of nanoparticles induce enlightening phenomena in optical tweezers. With the gradual increase in optical intensity, effects from saturable absorption (SA) and reverse SA (RSA) arise in sequence and thereby modulate the nonlinear properties of materials. In current nonlinear optical traps, however, the underlying physical mechanism is mainly confined within the SA regime because threshold values required to excite the RSA regime are extremely high. Herein, we demonstrate, both in theory and experiment, nonlinear optical tweezing within the RSA regime, proving that a fascinating composite trapping state is achievable at ultrahigh intensities through an optical force reversal induced through nonlinear absorption. Integrated results help in perfecting the nonlinear optical trapping system, thereby providing beneficial guidance for wider applications of nonlinear optics.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.