{"title":"On the projective derivative cocycle for circle diffeomorphisms","authors":"A. Navas, M. Ponce","doi":"10.4310/mrl.2022.v29.n6.a10","DOIUrl":null,"url":null,"abstract":"We study the projective derivative as a cocycle of Mobius transformations over groups of circle diffeomorphisms. By computing precise expressions for this cocycle, we obtain several results about reducibility and almost reducibility to a cocycle of rotations. We also introduce an extension of this cocycle to the diagonal action on the 3-torus for which we generalize the previous results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n6.a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study the projective derivative as a cocycle of Mobius transformations over groups of circle diffeomorphisms. By computing precise expressions for this cocycle, we obtain several results about reducibility and almost reducibility to a cocycle of rotations. We also introduce an extension of this cocycle to the diagonal action on the 3-torus for which we generalize the previous results.