PERCEPTION MINING AND SENTIMENT ANALYSIS OF POLITICAL SOCIALIZATION AMONG TWITTER USERS IN THE 2023 NIGERIA GENERAL ELECTION

Q4 Engineering
N. Eze, Ifeoma Onodugo, Stella Osondu, Akuchinyere Chilaka, F. Nwosu, Ekwutosi Ozioma Chukwu, Emmanuel Chekwube Eze
{"title":"PERCEPTION MINING AND SENTIMENT ANALYSIS OF POLITICAL SOCIALIZATION AMONG TWITTER USERS IN THE 2023 NIGERIA GENERAL ELECTION","authors":"N. Eze, Ifeoma Onodugo, Stella Osondu, Akuchinyere Chilaka, F. Nwosu, Ekwutosi Ozioma Chukwu, Emmanuel Chekwube Eze","doi":"10.21817/indjcse/2023/v14i3/231403055","DOIUrl":null,"url":null,"abstract":"The study analyzes the applicability and political use of Twitter using sentiments and content (textual) analysis with the purpose of examining the pattern of online communications among Nigerian voters during the run up to the 2023 Nigerian General Elections (NGE23) to make prediction for winners. Naive Bayes, Support Vector Machine, and Random Forest were utilized to determine sentiment analysis for English tweets, while ICT specialists were employed to determine content analysis for the three key Nigerian languages – Igbo, Hausa","PeriodicalId":52250,"journal":{"name":"Indian Journal of Computer Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21817/indjcse/2023/v14i3/231403055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The study analyzes the applicability and political use of Twitter using sentiments and content (textual) analysis with the purpose of examining the pattern of online communications among Nigerian voters during the run up to the 2023 Nigerian General Elections (NGE23) to make prediction for winners. Naive Bayes, Support Vector Machine, and Random Forest were utilized to determine sentiment analysis for English tweets, while ICT specialists were employed to determine content analysis for the three key Nigerian languages – Igbo, Hausa
2023年尼日利亚大选推特用户政治社会化的感知挖掘与情绪分析
该研究使用情感和内容(文本)分析来分析推特的适用性和政治用途,目的是研究2023年尼日利亚大选(NGE23)前尼日利亚选民的在线交流模式,以预测获胜者。Naive Bayes、支持向量机和随机森林被用于确定英语推文的情感分析,而ICT专家被用于确定尼日利亚三种关键语言——伊博语、豪萨语的内容分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Computer Science and Engineering
Indian Journal of Computer Science and Engineering Engineering-Engineering (miscellaneous)
自引率
0.00%
发文量
146
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信