Jinwei Chen, Ling Yang, Dahua Chen, Qunshan Mai, Meigui Wang, Lixuan Wu, Ping Kong
{"title":"Cell structure and mechanical properties of microcellular PLA foams prepared via autoclave constrained foaming","authors":"Jinwei Chen, Ling Yang, Dahua Chen, Qunshan Mai, Meigui Wang, Lixuan Wu, Ping Kong","doi":"10.1177/0262489320930328","DOIUrl":null,"url":null,"abstract":"Microcellular polylactic acid (PLA) foams with various cell size and cell morphologies were prepared using supercritical carbon dioxide (sc-CO2) solid-state foaming to investigate the relationship between the cell structure and mechanical properties. Constrained foaming was used and a wide range of cell structures with a constant porosity of ∼75% by tuning saturation pressure (8–24 MPa) was developed. Experiments varying the saturation pressure while holding other variables’ constant show that the mean cell size and the mean cell wall thickness decreased, while the cell density and the open porosity increased with increase of pressure. Tensile modulus of PLA foams decreased with increasing the saturation pressure, but the specific tensile modulus of PLA foams was still 15–80% higher than that of solid PLA. Tensile strength and elongation at break first increased with increasing saturation pressure up to 16 MPa and then decreased with further increasing saturation pressure (20 MPa and 24 MPa) at which opened-cell structure produced. Compressive modulus, compressive strength, and compressive yield stress also followed the same variation trend. The results indicated that not only cell size plays an important role in properties of PLA foams but also cell morphology can influence these properties significantly.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320930328","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489320930328","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
Abstract
Microcellular polylactic acid (PLA) foams with various cell size and cell morphologies were prepared using supercritical carbon dioxide (sc-CO2) solid-state foaming to investigate the relationship between the cell structure and mechanical properties. Constrained foaming was used and a wide range of cell structures with a constant porosity of ∼75% by tuning saturation pressure (8–24 MPa) was developed. Experiments varying the saturation pressure while holding other variables’ constant show that the mean cell size and the mean cell wall thickness decreased, while the cell density and the open porosity increased with increase of pressure. Tensile modulus of PLA foams decreased with increasing the saturation pressure, but the specific tensile modulus of PLA foams was still 15–80% higher than that of solid PLA. Tensile strength and elongation at break first increased with increasing saturation pressure up to 16 MPa and then decreased with further increasing saturation pressure (20 MPa and 24 MPa) at which opened-cell structure produced. Compressive modulus, compressive strength, and compressive yield stress also followed the same variation trend. The results indicated that not only cell size plays an important role in properties of PLA foams but also cell morphology can influence these properties significantly.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.