Interval Estimation for Symmetric and Asymmetric Exponential Power Distribution Parameters

IF 0.1 Q4 STATISTICS & PROBABILITY
A. Olósundé, A. T. Sóyínká
{"title":"Interval Estimation for Symmetric and Asymmetric Exponential Power Distribution Parameters","authors":"A. Olósundé, A. T. Sóyínká","doi":"10.29252/JIRSS.18.1.237","DOIUrl":null,"url":null,"abstract":"In point estimation of the value of a parameter, especially when the estimator under consideration has a probability density function, then the limit that the expected value of the estimator actually equaled the value of the parameter being estimated will tend towards zero for the estimator to be asymptotically unbiased. Hence, some interval about a point estimate needs to be included to accommodate for the region of an unbiased estimate. But in several occurrences when the random variable is not normally distributed as is common in practice; then the interval estimated for the location and scale parameters may be too wide to give the desired assurance. In this study, we have obtained some results on the confidence procedure for the location and scale parameters for symmetric and asymmetric exponential power distribution which is robust in the case of skewness or cases alike: tail heavier; and or thinner than the normal distribution using pivotal quantities approach, and on the basis of a random sample of fixed size n. Some simulation studies and applications are also examined.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JIRSS.18.1.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

In point estimation of the value of a parameter, especially when the estimator under consideration has a probability density function, then the limit that the expected value of the estimator actually equaled the value of the parameter being estimated will tend towards zero for the estimator to be asymptotically unbiased. Hence, some interval about a point estimate needs to be included to accommodate for the region of an unbiased estimate. But in several occurrences when the random variable is not normally distributed as is common in practice; then the interval estimated for the location and scale parameters may be too wide to give the desired assurance. In this study, we have obtained some results on the confidence procedure for the location and scale parameters for symmetric and asymmetric exponential power distribution which is robust in the case of skewness or cases alike: tail heavier; and or thinner than the normal distribution using pivotal quantities approach, and on the basis of a random sample of fixed size n. Some simulation studies and applications are also examined.
对称和非对称指数功率分布参数的区间估计
在参数值的点估计中,特别是当所考虑的估计器具有概率密度函数时,则估计器的期望值实际等于所估计的参数值的极限将趋于零,从而使估计器渐近无偏。因此,需要包括关于点估计的一些区间,以适应无偏估计的区域。但在一些情况下,随机变量不是正态分布的,这在实践中很常见;则为位置和尺度参数估计的间隔可能太宽而不能给出期望的保证。在本研究中,我们获得了对称和非对称指数幂分布的位置和尺度参数的置信过程的一些结果,该置信过程在偏斜或类似情况下是稳健的:尾部较重;和或薄于正态分布的临界量方法,并在固定大小n的随机样本的基础上,对一些模拟研究和应用也进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信