{"title":"Influence Analysis of Impeller-Guide Vane Matching on Energy and Pressure Pulsation in a Tubular Pump Device","authors":"Z. Lin, F. Yang, X. Xu, X. Jin, M. Chen, G. Xu","doi":"10.47176/jafm.16.11.1973","DOIUrl":null,"url":null,"abstract":"Tubular pump devices offer advantages such as low hydraulic losses, a simple structure, and easy maintenance. They find extensive application in areas such as irrigation, flood control, and water diversion. The performance and security of the pump are directly impacted by the contact between the impeller and guide vane. The matching relationship between the number of impeller blades and guide vanes significantly influences this interaction in tubular pump devices. To explore this impact, a Very-Large-Eddy Simulation turbulence model was employed to simulate the 3D flow fields of six different number matching relationships in a shaft tubular pump device. The analysis focused on the energy performance of the different schemes, the flow distribution of the guide vanes, and the velocity circulation at the guide vanes’ outlet. Entropy theory and energy gradient theory were employed to understand how the number matching relationship influences energy performance. Additionally, pressure pulsations were analyzed at the impeller and guide vanes for different matching configurations. The results indicate that although increasing the number of impeller blades can lead to higher water circulation, increased energy, and potentially unstable water flow, an increase in impeller blades number results in improved flow distribution in each guide vane groove, leading to an overall enhancement in the efficiency of the pump device. Similarly, increasing the number of guide vanes may increase the non-uniformity of the guide vane flow rate, but it also enhances the ability of the guide vanes to regulate water circulation and recover energy, thereby benefiting the overall efficiency.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.11.1973","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tubular pump devices offer advantages such as low hydraulic losses, a simple structure, and easy maintenance. They find extensive application in areas such as irrigation, flood control, and water diversion. The performance and security of the pump are directly impacted by the contact between the impeller and guide vane. The matching relationship between the number of impeller blades and guide vanes significantly influences this interaction in tubular pump devices. To explore this impact, a Very-Large-Eddy Simulation turbulence model was employed to simulate the 3D flow fields of six different number matching relationships in a shaft tubular pump device. The analysis focused on the energy performance of the different schemes, the flow distribution of the guide vanes, and the velocity circulation at the guide vanes’ outlet. Entropy theory and energy gradient theory were employed to understand how the number matching relationship influences energy performance. Additionally, pressure pulsations were analyzed at the impeller and guide vanes for different matching configurations. The results indicate that although increasing the number of impeller blades can lead to higher water circulation, increased energy, and potentially unstable water flow, an increase in impeller blades number results in improved flow distribution in each guide vane groove, leading to an overall enhancement in the efficiency of the pump device. Similarly, increasing the number of guide vanes may increase the non-uniformity of the guide vane flow rate, but it also enhances the ability of the guide vanes to regulate water circulation and recover energy, thereby benefiting the overall efficiency.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .