{"title":"Numerical Computation of Hydrodynamic Characteristics of an Automated Hand-Washing System","authors":"Thanh-Long Le, Thi-Hong-Nhi Vuong, Trandinh Phung","doi":"10.3390/computation11090167","DOIUrl":null,"url":null,"abstract":"The aim of this study is to develop a physical model and investigate the bactericidal effect of an automated hand-washing system through numerical computation, which is essential in areas affected by COVID-19 to ensure safety and limit the spread of the pandemic. The computational fluid dynamics approach is used to study the movement of the solution inside the hand-washing chamber. The finite element method with the k-ε model is applied to solve the incompressible Navier–Stokes equations. The numerical results provide insights into the solution’s hydrodynamic values, streamlines, and density in the two cases of with a hand and without a hand. The pressure and mean velocity of the fluid in the hand-washing chamber increases when the inlet flow rates increase. When the hand-washing chamber operates, it creates whirlpools around the hands, which remove bacteria. In addition, the liquid inlet flow affects the pressure in the hand-washing chamber. The ability to predict the hydraulic and cleaning performance efficiencies of the hand-washing chamber is crucial for evaluating its operability and improving its design in the future.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11090167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this study is to develop a physical model and investigate the bactericidal effect of an automated hand-washing system through numerical computation, which is essential in areas affected by COVID-19 to ensure safety and limit the spread of the pandemic. The computational fluid dynamics approach is used to study the movement of the solution inside the hand-washing chamber. The finite element method with the k-ε model is applied to solve the incompressible Navier–Stokes equations. The numerical results provide insights into the solution’s hydrodynamic values, streamlines, and density in the two cases of with a hand and without a hand. The pressure and mean velocity of the fluid in the hand-washing chamber increases when the inlet flow rates increase. When the hand-washing chamber operates, it creates whirlpools around the hands, which remove bacteria. In addition, the liquid inlet flow affects the pressure in the hand-washing chamber. The ability to predict the hydraulic and cleaning performance efficiencies of the hand-washing chamber is crucial for evaluating its operability and improving its design in the future.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.