Numerical Computation of Hydrodynamic Characteristics of an Automated Hand-Washing System

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Thanh-Long Le, Thi-Hong-Nhi Vuong, Trandinh Phung
{"title":"Numerical Computation of Hydrodynamic Characteristics of an Automated Hand-Washing System","authors":"Thanh-Long Le, Thi-Hong-Nhi Vuong, Trandinh Phung","doi":"10.3390/computation11090167","DOIUrl":null,"url":null,"abstract":"The aim of this study is to develop a physical model and investigate the bactericidal effect of an automated hand-washing system through numerical computation, which is essential in areas affected by COVID-19 to ensure safety and limit the spread of the pandemic. The computational fluid dynamics approach is used to study the movement of the solution inside the hand-washing chamber. The finite element method with the k-ε model is applied to solve the incompressible Navier–Stokes equations. The numerical results provide insights into the solution’s hydrodynamic values, streamlines, and density in the two cases of with a hand and without a hand. The pressure and mean velocity of the fluid in the hand-washing chamber increases when the inlet flow rates increase. When the hand-washing chamber operates, it creates whirlpools around the hands, which remove bacteria. In addition, the liquid inlet flow affects the pressure in the hand-washing chamber. The ability to predict the hydraulic and cleaning performance efficiencies of the hand-washing chamber is crucial for evaluating its operability and improving its design in the future.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11090167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this study is to develop a physical model and investigate the bactericidal effect of an automated hand-washing system through numerical computation, which is essential in areas affected by COVID-19 to ensure safety and limit the spread of the pandemic. The computational fluid dynamics approach is used to study the movement of the solution inside the hand-washing chamber. The finite element method with the k-ε model is applied to solve the incompressible Navier–Stokes equations. The numerical results provide insights into the solution’s hydrodynamic values, streamlines, and density in the two cases of with a hand and without a hand. The pressure and mean velocity of the fluid in the hand-washing chamber increases when the inlet flow rates increase. When the hand-washing chamber operates, it creates whirlpools around the hands, which remove bacteria. In addition, the liquid inlet flow affects the pressure in the hand-washing chamber. The ability to predict the hydraulic and cleaning performance efficiencies of the hand-washing chamber is crucial for evaluating its operability and improving its design in the future.
自动洗手系统水动力特性的数值计算
本研究的目的是开发一个物理模型,并通过数值计算研究自动洗手系统的杀菌效果,这对于受新冠肺炎影响的地区确保安全和限制大流行的传播至关重要。计算流体动力学方法用于研究溶液在洗手室内的运动。采用k-ε模型的有限元方法求解不可压缩Navier-Stokes方程。数值结果提供了在有手和无手两种情况下解的流体动力学值、流线和密度的见解。当入口流速增加时,洗手室中流体的压力和平均速度增加。当洗手室工作时,它会在手周围产生漩涡,从而去除细菌。此外,液体入口流量影响洗手室内的压力。预测洗手室的液压和清洁性能效率的能力对于评估其可操作性和改进其未来的设计至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computation
Computation Mathematics-Applied Mathematics
CiteScore
3.50
自引率
4.50%
发文量
201
审稿时长
8 weeks
期刊介绍: Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信