Zeyu Chen, Ya Fei Liu, Hongyu Peng, Q. Cheng, S. Hu, B. Raghothamachar, M. Dudley, R. Ghandi, S. Kennerly, P. Thieberger
{"title":"Analysis of Strain in Ion Implanted 4H-SiC by Fringes Observed in Synchrotron X-Ray Topography","authors":"Zeyu Chen, Ya Fei Liu, Hongyu Peng, Q. Cheng, S. Hu, B. Raghothamachar, M. Dudley, R. Ghandi, S. Kennerly, P. Thieberger","doi":"10.4028/p-di3si0","DOIUrl":null,"url":null,"abstract":"A novel high energy implantation system has been successfully developed to fabricate 4H-SiC superjunction devices for medium and high voltages via implantation of dopant atoms with multi-energy ranging from 13 to 66 MeV to depths up to 12um. Since the level of energies used is significantly higher than those employed for conventional implantation, lattice damage caused by such implantation must be characterized in detail to enhance the understanding of the nature of the damage. In regard to this, by employing the novel high energy system, 4H-SiC wafers with 12μm thick epilayers were blanket implanted by Al atoms at energies ranging from 13.8MeV to 65.7MeV and N atoms at energies ranging up to 42.99MeV. The lattice damages induced by the implantation were primarily characterized by Synchrotron X-ray Plane Wave Topography (SXPWT). 0008 topographs recorded from the samples are characterized by an intensity profile consisting of multiple asymmetric diffraction peaks with an angular separation of only 2” (arcseconds). Using Rocking-curve Analysis by Dynamical Simulation (RADS) program, diffracted intensity profile was used to extract the corresponding strain profile indicating an inhomogeneous strain distribution across the depth of the implanted layer.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"426 1","pages":"51 - 56"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-di3si0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
A novel high energy implantation system has been successfully developed to fabricate 4H-SiC superjunction devices for medium and high voltages via implantation of dopant atoms with multi-energy ranging from 13 to 66 MeV to depths up to 12um. Since the level of energies used is significantly higher than those employed for conventional implantation, lattice damage caused by such implantation must be characterized in detail to enhance the understanding of the nature of the damage. In regard to this, by employing the novel high energy system, 4H-SiC wafers with 12μm thick epilayers were blanket implanted by Al atoms at energies ranging from 13.8MeV to 65.7MeV and N atoms at energies ranging up to 42.99MeV. The lattice damages induced by the implantation were primarily characterized by Synchrotron X-ray Plane Wave Topography (SXPWT). 0008 topographs recorded from the samples are characterized by an intensity profile consisting of multiple asymmetric diffraction peaks with an angular separation of only 2” (arcseconds). Using Rocking-curve Analysis by Dynamical Simulation (RADS) program, diffracted intensity profile was used to extract the corresponding strain profile indicating an inhomogeneous strain distribution across the depth of the implanted layer.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.